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Exploratory Data Analysis 
	

The	data	set	provided	by	the	Swiss	Link	Market	Research	Institute.	This	is	from	a	survey	in	which	
people	got	a	questionnaire	about	their	experiences	with	a	restaurant.	In	particular,	it	is	of	
interest	to	understand:		

1.	Which	among	the	variables	have	the	most	influence	on	the	overall	satisfaction	(g27a)		

2.	Whether	some	of	them	measure	the	same	thing	or	are	related	to	the	same	factor.		

The	data	set	has	1033	respondents	and	answers	to	18	questions.	The	first	question	g27a	is	the	
overall	quality	assessment	while	the	other	variables	refer	to	specific	characteristics.	Responses	
are	coded	on	a	scale	between	1	(worst	possible)	and	10	(best	possible).	The	answers	that	report	
an	11	(“doesn’t	apply”)	and	a	12	(“no	answer	given”)	are	considered	missing	values.	

Summary	Statistic	of	Restaurant	Satisfaction	Survey	

	
Overall	(N=1033)	

General	Satisfaction	 	

			Mean	(SD)	 7.97	(1.64)	
			Median	(Range)	 8.00	(1.00,	10.00)	
Good	parking	situation	 	

			Mean	(SD)	 8.32	(2.71)	
			Median	(Range)	 10.00	(1.00,	12.00)	
Good	to	access	by	public	transport	 	



			Mean	(SD)	 8.49	(2.98)	
			Median	(Range)	 10.00	(1.00,	12.00)	
Kindly	placed	at	good	table	 	

			Mean	(SD)	 8.68	(1.83)	
			Median	(Range)	 9.00	(1.00,	12.00)	
Choice	on	the	menu	 	

			Mean	(SD)	 8.10	(1.82)	
			Median	(Range)	 8.00	(1.00,	12.00)	
Taste	of	food	 	

			Mean	(SD)	 8.50	(1.61)	
			Median	(Range)	 9.00	(1.00,	12.00)	
Meals	large	enough	 	

			Mean	(SD)	 9.00	(1.41)	
			Median	(Range)	 10.00	(2.00,	12.00)	
Quality	of	ingredients	 	

			Mean	(SD)	 8.70	(1.62)	
			Median	(Range)	 9.00	(1.00,	12.00)	
Quality	of	general	service	 	

			Mean	(SD)	 8.16	(1.86)	
			Median	(Range)	 9.00	(1.00,	12.00)	
Waiting	time	before	payment	 	

			Mean	(SD)	 8.30	(1.92)	
			Median	(Range)	 9.00	(1.00,	12.00)	
Neat	appearance	of	waiters	 	

			Mean	(SD)	 8.30	(1.81)	
			Median	(Range)	 9.00	(1.00,	12.00)	
Friendliness	 	

			Mean	(SD)	 8.66	(1.72)	
			Median	(Range)	 9.00	(1.00,	12.00)	
Competent	information	about	food	and	drinks	 	

			Mean	(SD)	 8.63	(2.28)	
			Median	(Range)	 9.00	(1.00,	12.00)	
Atmosphere	in	the	restaurant	 	



			Mean	(SD)	 7.86	(1.95)	
			Median	(Range)	 8.00	(1.00,	12.00)	
Air	quality/freshness	 	

			Mean	(SD)	 7.97	(2.08)	
			Median	(Range)	 8.00	(1.00,	12.00)	
Restaurant	clean	 	

			Mean	(SD)	 8.58	(1.65)	
			Median	(Range)	 9.00	(1.00,	12.00)	
Comfortable	chairs	 	

			Mean	(SD)	 7.91	(1.98)	
			Median	(Range)	 8.00	(1.00,	12.00)	
Correctness	of	bill	 	

			Mean	(SD)	 9.32	(1.44)	
			Median	(Range)	 10.00	(1.00,	12.00)	

	

Dealing with Missing Values 
	

At	this	phase	we	have	to	deal	with	missing	values	as	the	codings	corresponding	to	11	and	12	
corresponds	to	missing	data,	so	first	all	I’ve	highlighted	the	NA	in	the	dataset.	Moreover,	by	
dropping	the	observations	completely,	we	do	not	only	lose	statistical	power,	but	we	may	even	
get	biased	results	as	the	dropped	observations	could	provide	crucial	information	about	the	
problem	of	interest,	so	it	would	be	a	pity	to	simply	ignore	them.	

gg_miss_var(restaurant, show_pct = T) + 	
  labs( 	
    title = "Number of Missing Values in the Survey",	
    subtitle = "Answers 11 & 12",	
    caption = "Data: Swiss Link Market Research",	
    x = "Questions",	
    y = "% Missing Values") +	
  scale_y_continuous(breaks = seq(from = 0, to = 300, by = 5)) +	
  theme(	
    plot.title = element_text(	
      hjust = 0.5, # center	
      size = 12,	
      color = "steelblue",	
      face = "bold"),	
    plot.subtitle = element_text(	
      hjust = 0.5, # center	
      size = 10,	
      color = "gray",	
      face = "italic"))	



	

Thus	the	variable	which	present	more	number	of	missing	values	are:	

• g06e	-	Good	to	access	by	public	transport	(31,7%)	
• g14d	-	Competent	information	about	food	and	drinks	(19,6%)	
• g06f	-	Good	parking	situation	(17,8%)	

The	fact	that	two	questions	belonging	to	the	same	group	of	variables	have	the	higher	
percentage	of	missing	values	may	not	be	casual.		
Now	is	the	presence	of	missing	values	related	with	missings	between	variables?	

 

 

 

 

 

 

 

 



# Which combinations of variables occur to be missing together?	
gg_miss_upset(restaurant) 	

	

There	is	a	substantial	number	of	cases	in	which	some	missings	happen	to	occur	across	these	two	
variables	(=38),	so	this	is	a	sign	that	data	is	not	missing	at	random,	I	suppose	we’re	dealing	with	
MAR.	

	

Imputation for NAs and Diagnostic Visualization Tools 
	

Before	fitting	a	model,	even	if	by	default	the	function	will	exclude	the	NAs,	but	this	would	leave	
the	analysis	with	few	data.	I’m	going	to	perform	a	Regression	Imputation	.	A	regression	model	
is	estimated	to	predict	observed	values	of	a	variable	based	on	other	variables,	and	that	model	is	
then	used	to	impute	values	in	cases	where	the	value	of	that	variable	is	missing	(through	fitted	
values).	It’s	effective	to	use	with	non-missing	information	(MAR)	

pred <- rest.imp$predictorMatrix	
pred[,"g27a"] <- 0	
	
 

 



stripplot(rest.imp, pch = 20, cex = 2, layout = c(3,6))	

	

	

The	convention	is	to	plot	observed	data	in	blue	and	the	imputed	data	in	red.	The	figure	indicates	
that	the	imputed	and	the	observed	values	fall	in	the	same	range.	Under	MAR,	which	is	our	case,	
they	can	be	different,	both	in	location	and	spread,	but	their	multivariate	distribution	is	assumed	
to	be	identical,	and	this	is	quite	not	the	case:	



densityplot(rest.imp, main = "Densities of the observed and imputed data")	

I	therefore	wanted	to	investigate	more	the	nature	of	our	missing	values,	so	I’ve	decided	to	create	
other	two	imputated	datasets	using	two	other	different	methods,	the	mean	substitution	and	the	
predective	mean	method.	

The	former	consists	of	replacing	any	missing	value	with	the	mean	of	that	variable	for	all	other	
cases,	which	has	the	benefit	of	not	changing	the	sample	mean	for	that	variable.	However,	mean	
imputation	attenuates	any	correlations	involving	the	variables	that	are	imputed,	thus	it	gets	
problematic	in	multivariate	analysis	

The	latter	aims	to	reduce	the	bias	introduced	in	a	dataset	through	imputation,	by	drawing	real	
values	sampled	from	the	data.This	is	achieved	by	building	a	small	subset	of	observations	where	
the	outcome	variable	matches	the	outcome	of	the	observations	with	missing	values.	

By	plotting	the	densities	of	the	observed	and	imputed	data	for	all	the	three	cases,	we	see	that	the	
PMM	is	the	one	that	best	follow	the	shape	of	the	observed	data.	

rest.imp2 <- mice(restaurant, method = "pmm", m = 5, seed = 654)	
rest.imp3 <- mice(restaurant, method = "mean", m = 1, seed = 654)	

library(metaplot)	
library(lattice) 

	
norm.imput <- densityplot(rest.imp, ~g06f + g06e + g07d, 	
                          main = "Regression Imputation") 	
	
pmm.imput  <- densityplot(rest.imp2, ~g06f + g06e + g07d, 	



                          main = "Predictive Mean Imputation")	
	
mean.imput <- densityplot(rest.imp3, ~g06f + g06e + g07d, main = 	
                            "Mean Imputation")	
	
#print the plots	
multiplot(norm.imput, mean.imput, pmm.imput, nrow = 3 )	

	

	

Statistical Analysis 

	

Fitting the Model 

Next	step	consists	of	fitting	the	multiple	linear	regression	model	over	the	best	imputed	dataset,	
which	is	the	one	imputed	by	PMM.	

rest.impfit <- with(rest.imp2, lm(g27a ~	
                                   g06f+g06e+g07d+g08c+g09a+g09c+g09d+	
                                   g13a+g13j+g14a+g14b+g14d+g15a+g15g+	
                                   g15i+g15l+g16b))	
	
#regression model fitted to the first imputed data set (over m=5)	
summary(rest.impfit$analyses[[1]])	



## 	
## Call:	
## lm(formula = g27a ~ g06f + g06e + g07d + g08c + g09a + g09c + 	
##     g09d + g13a + g13j + g14a + g14b + g14d + g15a + g15g + g15i + 	
##     g15l + g16b)	
## 	
## Residuals:	
##     Min      1Q  Median      3Q     Max 	
## -6.1819 -0.4942  0.1310  0.5479  3.0860 	
## 	
## Coefficients:	
##              Estimate Std. Error t value Pr(>|t|)    	
## (Intercept)  0.064186   0.253076   0.254  0.79984    	
## g06f        -0.005775   0.011335  -0.509  0.61054    	
## g06e        -0.008057   0.009645  -0.835  0.40368    	
## g07d         0.098379   0.021138   4.654 3.68e-06 ***	
## g08c         0.034701   0.020982   1.654  0.09847 .  	
## g09a         0.148122   0.030877   4.797 1.85e-06 ***	
## g09c         0.014736   0.025137   0.586  0.55787    	
## g09d         0.083034   0.030945   2.683  0.00741 ** 	
## g13a         0.200077   0.028223   7.089 2.53e-12 ***	
## g13j         0.048094   0.019215   2.503  0.01247 *  	
## g14a        -0.075115   0.027914  -2.691  0.00724 ** 	
## g14b         0.140943   0.028843   4.887 1.19e-06 ***	
## g14d         0.087489   0.021389   4.090 4.65e-05 ***	
## g15a         0.132695   0.022021   6.026 2.35e-09 ***	
## g15g         0.058411   0.018581   3.144  0.00172 ** 	
## g15i        -0.009585   0.029052  -0.330  0.74153    	
## g15l         0.021256   0.019101   1.113  0.26604    	
## g16b        -0.012585   0.023506  -0.535  0.59250    	
## ---	
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
## 	
## Residual standard error: 0.9015 on 1015 degrees of freedom	
## Multiple R-squared:  0.7027, Adjusted R-squared:  0.6977 	
## F-statistic: 141.1 on 17 and 1015 DF,  p-value: < 2.2e-16	

restaurantpool <- pool(rest.impfit)	
summary(restaurantpool)	

##           term     estimate  std.error  statistic        df      p.value	
## 1  (Intercept)  0.093311999 0.25593471  0.3645930 867.97438 7.155041e-01	
## 2         g06f -0.004130195 0.01217619 -0.3392027 202.92081 7.348078e-01	
## 3         g06e -0.008842911 0.01178729 -0.7502073  42.02305 4.573099e-01	
## 4         g07d  0.092400750 0.02222263  4.1579575 411.80609 3.909001e-05	
## 5         g08c  0.028431068 0.02141505  1.3276206 737.13483 1.847145e-01	
## 6         g09a  0.152751259 0.03121551  4.8934411 970.30517 1.159728e-06	
## 7         g09c  0.016740601 0.02526794  0.6625233 992.74769 5.077897e-01	
## 8         g09d  0.079750269 0.03166617  2.5184688 738.84782 1.199677e-02	
## 9         g13a  0.207045126 0.02947312  7.0248809 361.35165 1.070832e-11	
## 10        g13j  0.039411470 0.02005144  1.9655184 333.65458 5.018336e-02	
## 11        g14a -0.068666337 0.02870816 -2.3918754 559.99955 1.709138e-02	



## 12        g14b  0.144759002 0.02960123  4.8903037 704.96456 1.248006e-06	
## 13        g14d  0.079839750 0.02376921  3.3589563  85.13462 1.172183e-03	
## 14        g15a  0.132617943 0.02258510  5.8719223 813.54221 6.272860e-09	
## 15        g15g  0.059672214 0.01898461  3.1431883 792.57343 1.733413e-03	
## 16        g15i -0.006654477 0.02907106 -0.2289038 926.33462 8.189942e-01	
## 17        g15l  0.027437413 0.01988795  1.3796000 434.60711 1.684192e-01	
## 18        g16b -0.018946953 0.02393784 -0.7915065 506.07374 4.290193e-01	

#The pooled fit object is of class "mipo" (multiply imputed pooled object).	

After	fitting	the	model,	it	was	possible	to	discover	which	variables	are	statistically	significant	(p-
value	<	0.01)	in	assessing	the	overall	quality	of	a	restaurant	:	

• g07d:	Kindly	placed	at	good	table	
• g09a:	Taste	of	food	
• g09d:	Quality	of	ingredients	
• g13a:	Quality	of	general	service	
• g14a:	Neat	appearance	of	waiters	
• g14b:	Friendliness	
• g14d:	Competent	information	about	food	and	drinks	
• g15a:	Atmosphere	in	the	restaurant	
• g15g:	Air	quality/freshness	

Diagnostic for goodness of the model 
#Model Diagnostic Plot	
par(mfrow=c(2,2))	
plot(rest.impfit$analyses[[1]], col = "steelblue")	

	



Regression	diagnostic:		

• The	first	plot	is	the	“Residual	vs	Fitted”,	in	which	we	can	observe	that	the	points	are	almost							
equally	spread	along	the	horizontal	line,	and	so	thus	suggesting	a	linear	relationship	between				
predictors	and	outcome	variable.	

• Then	we	have	the	“Normal	Q-Q”	plot,	which	claim	that	normality	assumption	about	the	
residuals	is	not	violated,	since	they	do	not	deviate	much	from	the	straight	line,	except	for	just	
a	few	outliers,	particularly	#840.	

• Following	the	diagnostic	I’ve	implemented	a	“Scale-Location”	plot,	in	which	we	can	see	that	
residuals	are	spread	equally	along	the	rangers	of	predictors,	proof	that	the	homoskedasticity	
assumption	holds.	

• Finally	we	have	“Residuals	vs	Leverage”	plot,	which	shows	that	the	value	further	from	the	
Cook’s	distance	(so	with	a	high	value	for	Cook’s	distance	scores)	is	#840,	suggesting	that	it	is	
influential	to	regression	and	that	results	will	be	altered	if	we	include	it.	

	

Data Visualization 
	

corr <- cor(complete(rest.imp2, 1)[, 2:18])	
library(gplots)	
rowclust <- hclust(dist(scale(complete(rest.imp2, 1)[, 2:18])), 	
                   method = "average")	
	
unicor <- cor(complete(rest.imp2, 1)[, 2:18])	
cordist <- 0.5 - unicor / 2	
	
colclust <- hclust(as.dist(cordist), method = "average")	
	
heatmap.2(	
  corr,	
  Rowv = as.dendrogram(colclust),	
  Colv = as.dendrogram(colclust),	
  scale = "none",	
  trace = "none",	
  col = heat.colors,	
  breaks = 8,	
  cexCol = 0.6,	
  cexRow = 0.5,	
  cellnote = round(unicor, digits = 2),	
  notecol = "black",	
  notecex = 1.0)	



	

• In	this	plot	it	can	be	seen	that	g06e	and	g06f	are	negatively	correlated,	this	can	be	explained	
by	the	fact	that	variable	g06f	measure	parking	situation	and	instead	g06e	measures	the	
access	to	the	restaurant	with	public	transport,	and	so	a	restaurant	with	a	good	parking	may	
be	far	from	city	centre	and	so	not	well	connected	by	public	transport.	

• The	highest	correlation	is	present	between	g09a	and	g09d	(0.78),	taste	of	food	and	quality	of	
ingredients,	which	makes	sense.	

• Then	the	variable	from	group	of	question	g14	and	g13	and	slightly	less	g15	are	highly	
correlated,	which	again	it	makes	sense	that	they	are	correlated	as	they	refer	to	common	
characteristics.	

	

Factor Analysis 
	

Then	I	decided	to	carry	on	a	Exploratory	Factor	Analysis,	rather	than	PCA,	as	the	heatmap	
suggested	an	underlying	causal	structure,	to	understand	whether	some	of	the	explanatory	
variables	measure	the	same	thing	or	are	related	to	the	same	factor.	For	the	same	reason	I’ve	
implemented	the	oblique	factor	matrix	rotation	(rotation = "promax")	excluding	the	variable	
“g27a”	since	the	focus	is	exactly	to	explain	“g27a”).	

restFA <- complete(rest.imp2,1)[,-1] #excluding 1st col	
fit <- factanal(restFA, factors = 9, rotation = "promax") 	



Factors Selection Criteria 
test <- data.frame(fit$STATISTIC, fit$PVAL )	
colnames(test) <-  c("Chi-Squared Goodness-of-fit Statistic", "p-value" )	
rownames(test) <- ""	
test	

##  Chi-Squared Goodness-of-fit Statistic   p-value	
##                                18.4486 0.4926839	

To	decide	how	many	factors	are	sufficient	to	account	for	the	correlations	among	the	original	
variables	we	look	at	the	significance	level	of	the	𝜒!	goodness-of-fit	statistic	that	we	can	find	in	the	
output.	The	null	of	this	test	is	that	9	factors	are	sufficient	for	our	model	and	the	p-value	proves	
that	there	is	moderate	evidence	to	not	reject	𝐻0.	

Also	from	the	loadings	output	I’ve	noticed	that	the	SS	loading	of	the	9th	factor	is	low	(<<	1),	but	
the	cumulative	variance	explained	reach	the	60%	which	I’ve	assessed	as	a	good	cutoff.	

The	answer	may	also	be	seen	graphically	by	taking	a	look	at	the	scree-plot	of	the	eigenvalues	and	
counting	after	how	many	eigenvalues	the	line	gets	flat	

barplot(eigen(cor(restFA))$values,	
       main = "Scree-plot",	
       xlab = "Eigenvalues",	
       col ="orange")	
lines(x = 1:nrow(as.matrix(eigen(cor(restFA))$values)), eigen(cor(restFA))$values, 	
      type="b", pch=19, col = "black")	

	



Then,	I’ve	looked	at	the	uniqueness	for	selecting	the	most	important	variables.	A	high	uniqueness	
for	a	variable	usually	means	it	doesn’t	fit	clearly	into	the	factors.	If	we	subtract	the	uniqueness	
from	1,	we	get	a	quantity	called	the	communality.	The	communality	is	the	proportion	of	variance	
of	the	𝑖 − 𝑡ℎ	variable	contributed	by	the	common	factors.	

uniq <- round(as.data.frame(cbind(fit$uniquenesses, (1-fit$uniquenesses))), digits 
= 2)	
colnames(uniq) <- c("Uniqueness", "Communalities")	
uniq 	

##      Uniqueness Communalities	
## g06f       0.56          0.44	
## g06e       0.86          0.14	
## g07d       0.49          0.51	
## g08c       0.00          1.00	
## g09a       0.23          0.77	
## g09c       0.56          0.44	
## g09d       0.18          0.82	
## g13a       0.16          0.84	
## g13j       0.55          0.45	
## g14a       0.16          0.84	
## g14b       0.25          0.75	
## g14d       0.31          0.69	
## g15a       0.00          1.00	
## g15g       0.00          1.00	
## g15i       0.32          0.68	
## g15l       0.38          0.62	
## g16b       0.61          0.39	

Ø As	a	matter	of	fact	the	variables	with	higher	values	of	uniqueness	corresponds	to	the	
statistically	significant	variables	in	the	multiple	linear	regression	model	

Factor Loadings 

Before	interpreting	all	the	loadings,	as	we’re	dealing	with	17	variables	I’ve	set	a	cutoff	for	not	
showing	in	the	output	low	values	and	then	I’ve	selected	the	variables	whose	variance	is	better	
explained	by	the	extracted	factors	(communalities	>	0.5)	described	in	the	previous	section	

loadings(fit, digits = 2, cutoff = 0.1, sort=TRUE)	

## 	
## Loadings:	
##      Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8 Factor9	
## g06f                                                          0.676         	
## g06e  0.122                                                  -0.372         	
## g07d  0.622                                          -0.129   0.126         	
## g08c                          1.020                                         	
## g09a  0.109   0.822                                                         	
## g09c          0.308           0.100                   0.429                 	
## g09d          0.920                                                         	
## g13a  0.976                                                          -0.124 	
## g13j  0.512                          -0.123   0.153   0.182                 	



## g14a  0.543                                                           0.538 	
## g14b  0.867                                  -0.196   0.150           0.124 	
## g14d  0.615   0.205                           0.130  -0.153           0.130 	
## g15a  0.114                           0.886                                 	
## g15g                  1.053                                                 	
## g15i  0.142           0.188                   0.152   0.156           0.200 	
## g15l                                          0.817                         	
## g16b                                                  0.617                 	
## 	
##                Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 Factor8	
## SS loadings      3.093   1.695   1.159   1.077   0.815   0.794   0.707   0.631	
## Proportion Var   0.182   0.100   0.068   0.063   0.048   0.047   0.042   0.037	
## Cumulative Var   0.182   0.282   0.350   0.413   0.461   0.508   0.549   0.587	
##                Factor9	
## SS loadings      0.393	
## Proportion Var   0.023	
## Cumulative Var   0.610	

From	the	output	it	appears	that	the	group	of	variables	g13a,g14b,g14a,g14d,g13j	shows	high	
correlation	with	Factor	1	which	can	be	addressed	as	“Personnel”	and	it’s	also	the	factor	which	
explain	the	greatest	proportion	of	variance	and	with	biggest	sum	of	square	loadings	and	so	the	
main	important	to	asses	the	overall	satisfaction	with	a	restaurant	

The	second	factor	is	highly	correlated	with	the	variables	g09a,g09c,g09d,	which	could	have	been	
expected	as	these	questions	come	from	the	same	group,	and	these	could	be	addressed	as	Menù,	
the	second	most	important	factor.	

The	third	factor	regroup	the	variables	of	the	group	of	question	g15g,	g15i	and	address	the	general	
satisfaction	with	the	Location,	of	which	the	main	required	feature	is	“Air	Quality/Freshness”	

Then,	I	want	to	move	the	attention	to	the	8th	factor	which	refers	to	Accessibility	as	the	variables	
that	mainly	load	this	factor	are	g06f,g06e,	of	which	we’ve	already	checked	the	negative	
correlation	and	for	the	same	reason	an	increase	of	“Good	Parking	Situation”	implies	a	decrease	of	
“Good	to	Access	by	Public	Transport”	

	

Conclusions 
	

After	fitting	a	multiple	linear	regression	model	on	the	data	imputed	according	the	best	criteria	
among	regression	imputation,	mean	imputation	and	predictive	mean	imputation	and	after	
performing	an	exploratory	factor	analysis	it	was	possible	to	have	an	insight	on	the	main	factors	
when	assessing	the	overall	satisfaction	with	a	restaurant:		

1.	Personnel		

2.	Menù		

3.	Location		

4.	Accessibility	
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