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In light of the recent technological advancements, our society has evolved into a prolific source of
data generation, accompanied by the widespread use of machine learning algorithms, particularly
deep neural networks. However, these algorithms rely on substantial datasets which often
contain sensitive and private information.

Within this context, generative models have emerged to create synthetic samples across various
domains. Ideally, these models should prevent the exposure of individual-specific information
from the training data. Unfortunately, recent literature has shown that this assumption is not
consistently met, particularlywith Generative Adversarial Networks (GANs), which lacks of robust
privacy guarantees.

Nevertheless, there is a critical need to strike a balance between our responsibilities as data
stewards and the importance to advance data mining research. In this regard, Privacy-Enhancing
Technologies (PETs) can help mitigate these challenges by imposing privacy constraints on ML
models or more generally in algorithms, enabling their use and sharing without compromising the
confidentiality of the training data.

This research is dedicated to exploring the latest techniques in the field of privacy, leveraging
differentially private synthetic data and investigating the trade-off between data utility and
privacy preservation. The outcomes of this study have the potential to:

• Enhance the understanding of the latest techniques for generating synthetic data while
respecting the principles of differential privacy.

• Provide insights about the trade-off between data utility and privacy preservation, specifi-
cally in the context of generative models.

• Furnish guidance to researchers, organizations, and policymakers on the practical application
of differential privacy-enhanced synthetic data.

• Contribute to the development of best practices for leveraging synthetic data in data-driven
tasks while adhering to stringent privacy regulations.

This thesis is the outcome of a research project conducted for the Italian National Institute of Statistics (ISTAT).
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„The GDPR has become a synonym for effective data
protection legislation worldwide. Now its application will
decide on its full success. While the independent
authorities are doing enormous work, it is time to ensure
that we can act more quickly and decisively, especially in
serious cases where a breach can cause many victims
across the EU

— Věra Jourová
Vice-President for Values and Transparency,

European Commission
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*OUSPEVDUJPO �
In recent decades, our global society has experienced a series of remarkable technological
advancements that have significantly reshaped various socio-economic aspects of the world. One
standout achievement among thesemilestones is the extensive adoption of the Internet and social
networks, which has not only profoundly influenced individuals but also organizations. This digital
transformation has given rise to a concept known as “datafication” as discussed in Cukier’s work
[Cukier and Mayer-Schoenberger], where every event or state, whether occurring in the physical
or digital realm, is methodically converted into data. These data are then gathered, processed, and
subjected to analysis, effectively converting our society, economy, and physical environment into
expansive reservoirs of data, resembling what could be termed as “data fountains” [Ricciato, Fabio
et al., 2020]. Virtually all of our daily activities now serve as opportunities for data collection.

The utilization of data, particularly datasets containing micro-level, individual-specific information,
have drawn significant attention in the realm of data mining research. In today’s world, numerous
real-world systems heavily depend on machine learning (ML) models to carry out a diverse
range of tasks, including uncovering novel data patterns, identifying anomalies, and facilitating
recommendation systems. However, a significant challenge arises, as manyof theseMLalgorithms
have an insatiable demand for data [Cao et al., 2021], often necessitating the inclusion of personal
information.

The crux of this challenge lies in the acquisition of these extensive datasets via crowdsourcing
platforms, which may contain legally protected information about individuals. This information
encompasses various domains, such as medical, financial, behavioral, transactional, and even
political preferences 1. Moreover, it may extend to include location data and images.

Machine learning systems that have been trained on sensitive user data are vulnerable to privacy
breaches [Hayes et al., 2018]. The majority of these breaches are associated with a phenomenon
known as overfitting [Shokri et al.], wherein a model’s training error significantly exceeds its test
error. Overfitting implies that the model has effectively memorized the sensitive, personal, or
private data utilized during training, as demonstrated by various attacks conducted by researchers
such as [Shokri et al.], [Song and Shmatikov, 2019], and [Carlini et al.], among others.

1Facebook, Cambridge Analytica scandal (CNBC)

1

https://www.cnbc.com/2018/03/21/facebook-cambridge-analytica-scandal-everything-you-need-to-know.html


Chapter 1 Introduction

For instance, [Shokri et al.] illustrated a method for determining whether a specific record was
part of the training dataset for a given MLmodel. Their technique achieved accuracy rates of 74%
and 94% when tested on Amazon and Google Cloud machine learning systems, respectively.

In recent years, major cloud providers like Google2, IBM3, Microsoft4, and Amazon5 have intro-
duced software solutions aimed at simplifying machine learning tasks within their applications.
They offer these capabilities to customers through a suite of APIs, under the concept known as
Machine Learning as a Service (MLaaS). This approach has gained popularity among organizations
looking to leverage robust ML engines for complex tasks, while avoiding the challenges associated
with building such infrastructure from the ground up. However, it’s crucial to recognize that if
malicious actors were to obtain the data used in training these models, the resultant data leaks
could have severe repercussions.

Furthermore, transfer learning, heralded as the next frontier in the advancement of machine learn-
ing, empowers the utilization of pre-existing, sophisticated models stored on devices, obviating
the necessity to initiate model training from scratch. Although this approach offers benefits in
terms of reduced latency and enhanced energy efficiency, it gives rise to concerns due to the fact
that these models are publicly accessible in model zoo repositories, aligning with open-source
principles. Consequently, the exposure of model parameters and training data within these
repositories can be susceptible to exploitation in privacy attacks.

��� .PUJWBUJPO

In navigating the complex terrain of machine learning applications, the organizations responsible
for these technologies must strike a delicate balance. They are tasked with the responsibility of
managing their data in a responsible manner, thereby minimizing the risks associated with data
loss, theft, and misuse. Simultaneously, they must cater to the needs of the “modeler,” whose
primary role revolves around the development and refinement of these applications.

In the realm of research, the primary objective is not to replace existing data sources but to aug-
ment them with fresh data streams. This scenario has engendered debates and elicited responses
from various organizations and public administrations, spurring discussions on effective strategies
to address the situation. An illustration of this can be found in the European Union’s General
Data Protection Regulation (GDPR) [Council of the European Union, 2016], which specifically
deals with data protection, privacy, and the transfer of personal data, granting users increased
2Google Vertex AI
3Watson Machine Learning - IBM Cloud
4Microsoft Azure ML
5Amazon Machine Learning on AWS
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control over their personal information. Under the GDPR, businesses are allowed to collect
anonymized data without explicit consent, utilize it for diverse purposes, and store it indefinitely.
Additionally, the European Commission’s White Paper on Artificial Intelligence [Commission,
2020] underscores the transformative potential of artificial intelligence across multiple domains,
including healthcare, agriculture, climate change mitigation, production efficiency, and security.

National Statistical Offices (NSOs), alongside other relevant institutions, have the critical respon-
sibility of providing reliable, pertinent, timely, and high-quality data to support evidence-based
decision-making. In many instances, NSOs gather sensitive data pertaining to individuals and
businesses through surveys and censuses, encompassing information such as population census
data or data from household and business surveys. Nevertheless, to respond effectively to
emerging issues, NSOs often require supplementary data from secondary sources, including
administrative or private sector data.

This scenario calls for a coordinated international response, necessitating timely access to poten-
tially sensitive data shared among multiple partners, some of whom may be located in different
countries. However, due to legitimate privacy concerns, unrestricted access to all data cannot be
granted to these partners.

NSOs possess data that holds the potential to fuel innovation and improve national services,
research endeavors, and societal well-being. However, there has been a notable increase in
sustained cyber threats, complex networks of intermediaries motivated to acquire sensitive data,
and advancements in techniques for re-identifying and linking data to individuals across multiple
sources.

The utilization of micro-data is typically regulated by a range of legal frameworks. One notable
example pertains to National Statistical Offices (NSOs), which have long confronted the challenge
of safeguarding confidentiality, despite the widely recognized importance of this data. This issue
is exemplified in a 1993 White Paper on Open Government in the United Kingdom6:

“Open access to statistics provides the citizen with more than a picture of society.
It offers a window on the work and performance of government itself, showing the
scale of government activity in every area of public policy and allowing the impact of
public policies and actions to be assessed.”

To address these challenges, the U.S. Census Bureau, for instance, has implemented the use of
differential privacy78 as a means to protect individual privacy while still enabling the release of
aggregated population statistics.
6White Paper on Open Government
72020 Decennial Census: Processing the Count: Disclosure Avoidance Modernization
8Differential Privacy and the 2020 US Census
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https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/271975/2290.pdf
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In a similar way, the University of California, Berkeley, utilizes differential privacy9 as a crucial tool
in their efforts to study the transmission of infectious diseases, including influenza and COVID-19.
This approach allows them to gather valuable insights without compromising the confidentiality
and identities of individual patients.

Apple’s Differential Privacy Team has been at the forefront of this endeavor, pioneering the
development of efficient and scalable local differentially private algorithms [Apple, 2017]. Their
goal is to improve user experience and extract valuable insights from data while upholding user
privacy. In this approach, each individual user applies privacy measures to their data before
transmitting it to a centralized server, ensuring a high level of data protection.

࣏࣑࣓ࣛࣞ' ��� ] Apple uses DP to collect some data from end-user devices running iOS or macOS [Apple,
2017]

This underscores the viability of achieving a delicate equilibrium between data utility, privacy
preservation, and server computation, a pivotal consideration within this context.

In this context, a paramount concern is the protection of personally identifiable information
(PII), which encompasses data that can be leveraged to identify an individual. In addition to
shielding PII from potential breaches, companies must also adhere to a range of data protection
regulations, such as Europe’s GDPR.

Cyberattacks not only jeopardize the individuals whose information is at risk but also impose
legal, financial, and reputational perils upon organizations engaged in data collection. The mere
removal of obvious PII, such as names and addresses, is insufficient, as other quasi-identifiers
can still be exploited to pinpoint an individual within a dataset.

Pentland 10 revisited this subject in an article for the World Economic Forum, highlighting the
advancing intelligence of mobile telephone networks and their function as intelligent, responsive
systems equipped with sensors that act as their eyes and ears.

A prevailing paradigm in contemporary machine learning revolves around a centralized authority
that holds exclusive access to data sourced from a large user base. Several prominent entities,
9University of California Berkeleys - DP
10The Global Information Technology Report 2008–2009
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including corporations, universities, and government institutions, exert authority over the collec-
tion and storage of extensive volumes of sensitive personal data. These entities are then able
to create models using this data and deploy them at their discretion. However, this paradigm
tends to limit accessibility to machine learning and the spectrum of its potential applications,
often leading to the marginalization of data subjects. Users who are unwilling to share their data
with these entities may encounter challenges when seeking access to machine learning-powered
products and services.

Entities that lack access to extensive data-gathering resources, such as researchers, small busi-
nesses, and ordinary individuals, face difficulties in accumulating sufficient data for training
specific types of models. Furthermore, once a user shares their data, they may lose control over
it, potentially leading to privacy concerns.

��� *OUVJUJPOT

Collecting real-world data can sometimes be cost-prohibitive or logistically challenging. In such
situations, generating synthetic data offers a more accessible alternative to acquiring original
data. It also facilitates model training across a wide range of scenarios that real-world data may
not adequately represent.

There are numerous scenarios in which companies employ synthetic data to make information
available for processing, especially when regulations or privacy concerns impose restrictions on
accessing the original data. For example, in a post-GDPR world, the processing of customer
data involves stringent compliance and governance requirements for companies. In these cases,
synthetic data serves as an anonymization technique that provides companies with greater
flexibility and freedom to process data in a secure manner.

Generative models offer versatile and adaptable means of data sharing. In this scenario, the data
curator initially encodes private data into a generative model. Subsequently, this model is shared
with an analyst, who can use it to create data that resembles the training dataset. Importantly,
it allows for the accommodation of unforeseen and novel tasks without the need for repeated
interactions with the curator, as the analyst can readily generate additional synthetic data as
required.

The underlying concept here is that generative models possess the ability to autonomously
capture the fundamental characteristics of a dataset, including intricate patterns and valuable
correlations among different attributes.

1.2 Intuitions 5



Chapter 1 Introduction

One promising approach in this domain involves modeling the data-generating distribution by
training a generativemodel on the original data using technologies to safeguard privacy, commonly
referred to as Privacy Enhancing Technologies (PETs). This privacy-preserving model is then
shared along with its private parameters, allowing anyone to generate a synthetic dataset that
closely mirrors the original training data without compromising the robust protection of privacy.

��� 0CKFDUJWFT

This thesis is dedicated to explore the latest techniques in the field of generating synthetic
data, adopting one powerful PET: differential privacy. Synthetic data generation and employing
generative models, gained significant recognition as a method for striking a balance between
data utility and privacy preservation. The primary focus of this research is to investigate and
evaluate the utility and similarity of synthetic data generated by state-of-the-art differential
privacy-enhanced generative models.

The structure of the paper is as follows:

• Chapter 2: This chapter provides the theoretical foundation for the paper. It offers a
brief introduction to deep learning, generative models, a variety of Privacy Enhancing
Technologies (PETs), and includes examples of privacy attacks.

• Chapter 3: In this chapter, the methodology of the thesis is explained in detail. It compre-
hensively reviews and analyzes the existing literature on generative models with Differential
Privacy, including models such as DPGAN, DP-CTGAN and PATEGAN. Additionally, this
section describes the materials and metrics used to assess the utility of synthetic data
generated by these models, which are crucial for the subsequent analysis.

• Chapter 4: This chapter explore the experiments conducted in this work. The aim is to
underscore the flexibility and effectiveness of the approach in practical scenarios.

• Chapter 5: This chapter concludes the paper and provides a summary of the key findings
and insights obtained through the research.

By following this organized structure, the thesis aims to provide a comprehensive exploration
of the generation of synthetic data using differential privacy, shedding light on its utility and
effectiveness.

6 Chapter 1 Introduction
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In the realm ofmachine learning (ML), most models can be conceptualized as parametric functions,
denoted as 
ૌ	ݒ, where ૌ represents an input, typically presented as a vector of attributes
referred to as “features,” and  signifies a parameter vector. The function space, denoted asࠖ ળ � ૌ ި 
ૌ	ݒ, comprise a collection of potential hypotheses used to approximate the
underlying data distribution from which the dataset was originally drawn.

A learning algorithm examines the training data with the aim of determining the optimal values
for the parameter(s) . Essentially, during the training phase, an ML algorithm strives to catch
the inherent characteristics of a dataset in the context of a specified “task.” Following this, the
model’s performance is assessed using an independent test dataset, which must be separate from
the training dataset. This separation ensures an evaluation of the model’s ability to generalize
beyond the data on which it was trained.

Upon the completion of training, the model is ready for deployment to make predictions on previ-
ously unseen inputs. At this stage, the parameter values  are fixed, and the model computes 
ૌ	ݒ
for novel input instances ૌ. In the domain of machine learning, tasks are commonly categorized
into two primary types based on the underlying data structure:

• Supervised learning: This involves establishing a connection between inputs and outputs by
using training examples, where inputs are paired with corresponding labeled outputs.

• Unsupervised learning: In cases where inputs lack labels, the method’s objective remains
unsupervised.

Machine learning models can also be categorized based on the probability distributions they
learn. Assuming a set of input data denoted as ળ, with the goal of assigning labels ્ to it, two
fundamental approaches can be employed:

• Discriminative models: These models learn the conditional probability distribution ૄ	 ]ળ �ૌ
 of the target variable , given an observation ૌ.
• Generative models: These models learn the joint probability distribution ૄ	ળ   
 over the
observable variable ળ and the target variable .
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It’s crucial to note that generative models must adhere to a probabilistic nature rather
than being deterministic.

The advent of deep learning has given rise to a novel class of techniques known as deep generative
models, which combine generative models with deep neural networks. These techniques have
made significant contributions to the advancement ofGenerativeArtificial Intelligence (GenAI).

Generative models are specifically engineered to approximate the probability distribution of
real-world data. This typically involves defining a parametric family of probability densities and
optimizing the associated parameters. The optimization can be carried out either to maximize
the likelihood of real data or to minimize the divergence between the distributions of generated
data and real data.

Generative AI can be categorized as either unimodal ormultimodal. Unimodal systems exclusively
handle a single type of input, such as text, while multimodal systems are capable of processing
multiple types of input, such as both text and images. Prominent frameworks for pursuing
generative AI include Generative Adversarial Networks (GANs), which is the primary focus of
this study, and Generative Pre-trained Transformers (GPTs).
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Generative Adversarial Networks (GANs), introduced by [Goodfellow et al., 2014] at the Neural
Information Processing Systems (NIPS), have emerged as the state-of-the-art neural network
architecture, revolutionizing the field of generative modeling. GANs offer a robust mechanism for
generating data samples that accurately capture the characteristics of a desired target distribution.
This groundbreaking framework is built upon the intricate interplay between two distinct neural
networks, namely the generator and the discriminator, operating within a dynamic adversarial
process (Figure 2.1).

At the core of the GAN framework lies the concept of adversarial training, wherein the generator
and discriminator engage in a competitive process aimed at improving the quality of generated
samples; the former aims to produce samples that are indistinguishable from real data and the
latter strives to accurately differentiate between genuine and generated samples.

Mathematically, we denote the generator as (ઢ) and the discriminator as (ટ). The generator (G)
takes an input vector () drawn from a latent space, often governed by a random noise distribution
(ફ	
), and generates a synthetic sample (ૌ) intended to closely resemble authentic data samples:ૌ � ઢ	
. Conversely, the discriminator (ટ) assesses either a real sample ળ originating from
the true data distribution ફ\ળ^, or a generated sample ળ  produced by G, and estimates the
probability that the input is real, which means: ટ	ળ
 ި <� �> ટ	ળ 
 ި <� �>.
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࣏࣑࣓ࣛࣞ' ��� ] Architecture of a GAN. The generator only sees noisy latent representations and outputs a
reconstruction. The discriminator gets alternatively real or generated inputs and predicts
whether it is real or fake [Md. Rezaul Karim, Java Deep Learning Projects]]

The training regimen alternates between two distinct phases:

1. Generator Training: During this phase, the generator seeks to improve its ability to generate
samples that can deceive the discriminator. The generator’s objective is to minimize the
following expression, compelling the generated samples to be classified as authentic:

NJOઢ NBYટ ஒૌૄࡒdata<MPHટ	ૌ
> � ஒૄࡒ<� ࠨ MPHટ	ઢ	

>
2. Discriminator Training: In this phase, the discriminator is trained to effectively distinguish
between real and generated samples. The discriminator aims to maximize its classification
accuracy, leading to the maximization of  	ટ ઢ
.

The iterative optimization process inherent in GANs ultimately reaches an equilibrium state
where the generator network produces samples that are hardly distinguishable from real data. In
contrast, the discriminator utilizes pure supervised learning to assess whether the samples are
real or fake, essentially performing binary classification (see Figure 2.2).

2.1 Machine Learning and Generative Deep Learning 9
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࣏࣑࣓ࣛࣞ' ��� ] Back-propagation of the distribution matching error [Joseph Rocca, TDS]

The growing interest in generative models is well-demonstrated by their versatile applications
across various domains, including image synthesis, style transfer, and data augmentation, among
many others. However, it’s crucial to acknowledge that, while GANs exhibit versatility, achieving
effective training of these models requires meticulous hyperparameter tuning and may be sus-
ceptible to issues such as mode collapse. Mode collapse occurs when the generator produces a
limited range of diverse samples, limiting the variety of generated data.

࣏࣑࣓ࣛࣞ' ��� ] Improvement of GAN models across the years Salehi et al. [2020]

$IBMMFOHFT

[Webster et al., 2021a] found that modern GANs trained on facial images can produce examples
that closely resemble their training data, potentially revealing private information. To protect
individuals’ privacy, it’s important to train generative models with privacy constraints. However,
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this can be challenging due to training instabilities and the need for careful hyperparameter
tuning.

The loss functions of the discriminator and generator can exhibit erratic oscillations instead of
showing long-term stability. Mode collapse is another challenge where the generator focuses on
a limited set of samples that consistently fool the discriminator. This leads to a near-zero gradient
in the loss function.

The generator’s loss function may increase over time, even though the quality of the generated
images improves. This lack of correlation between the loss and image quality makes monitoring
GAN training difficult.

Even with basic GANs, there are many hyperparameters to fine-tune, including the architecture
of the discriminator and generator, batch normalization, dropout, learning rate, activation layers,
convolutional filters, kernel size, striding, batch size, and latent space size. Finding the right set
of parameters often requires an iterative and experimental approach, which in most of the cases
turns as an expensive process [Papernot et al., 2019].
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Modeling the probability distribution of rows in tabular data and generating realistic synthetic
data can be a complex task for Generative Adversarial Networks. These challenges also include
correlated features, a combination of discrete and continuous columns. Continuous columns may
exhibit multiple modes, while discrete columns may suffer from imbalances that make modeling
challenging. Existing statistical and deep neural network models struggle to properly learn from
these highly sparse vectors. In response, Conditional Tabular GAN [Xu et al., 2019] introduces
several new techniques:

1. Mode-specific normalization: To address the non-Gaussian and multimodal distribution of
the data, each column is processed independently. A “variational Gaussian mixture model
(VGM)” estimates the number ofmodes, and for each value, it calculates the probability from
each mode (൚િ � ൕિ ࠭ ), where  represents a Gaussian distribution (see Figure 2.4). The
mode with the highest probability is used to normalize the values. Each value is represented
as a one-hot vector indicating the mode and a scalar indicating the value within that mode.
This approach helps manage the complex distribution of values in tabular data.

2. Conditional generator and training-by-sampling: To address the challenges posed by
imbalanced discrete columns in tabular data, CTGAN incorporates a conditional generator
and a training-by-sampling approach. The key objective here is to efficiently resample
data in a manner that ensures all categories within discrete attributes are sampled, aiming
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࣏࣑࣓ࣛࣞ' ��� ] An example of mode-specific normalization [Xu et al., 2019]

for balanced representation (though not necessarily uniform) during the training process.
Additionally, the model needs to recover the distribution of the original, non-resampled
data during testing. To achieve this, the generator penalizes its loss by introducing the
cross-entropy between conditional vectors, which is averaged over all instances within a
batch. This technique helps address the imbalanced nature of discrete data and ensures
that the generator produces diverse and realistic samples.

࣏࣑࣓ࣛࣞ' ��� ] CTGAN model. The conditional generator can generate synthetic rows conditioned on one
of the discrete columns. With training-by-sampling, the data is sampled according to the
frequency of each category, thus CTGAN can evenly explore all possible discrete values [Xu
et al., 2019].

The output generated by the conditional generator undergoes evaluation by the discriminator.
The discriminator’s role is to estimate the distance between the learned conditional distributionફઢ	ૃો]સૃૂહ
 and the conditional distribution on real data ફ	ૃો]સૃૂહ
. Properly sampling the
conditional vector and training data is crucial in ensuring that the model adequately explores all
possible values within the discrete columns. This balanced exploration of discrete attributes is
essential for the generator to produce synthetic data that closely matches the distribution of real
data under the given conditions.

3. Network structure: two fully-connected hidden layers in both generator and discriminator.
In generator, batch-normalization and Relu activation function are used. After the two hidden
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layers, the synthetic row representation is generated using a combination of activation
functions. The scalar values ൊઽ are generated using the Tanh function, while the mode
indicator ോઽ and the one-hot vector values હઽ are generated using the Gumbel softmax. In the
discriminator, the model employs a leaky Relu activation function and incorporates dropout
on each hidden layer.
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The PATE framework is designed to protect the privacy of training data during the learning
process by transferring knowledge from an ensemble of teacher models to a student model.
Privacy guarantees in this framework are intuitively understood and rigorously expressed in terms
of differential privacy. The PATE framework comprises three key components:

1. Ensemble of Teacher Models:

• Each teacher is a model trained independently on a distinct subset of the data, with
the goal of protecting the privacy of the data.

• Data is partitioned in a way that ensures no two teachers are trained on overlapping
data.

• Various learning techniques can be applied to train each teacher, resulting in multiple
models solving the same task.

• During inference, teachers make independent predictions.

2. Aggregation Mechanism:

• The aggregation mechanism plays a crucial role in ensuring privacy.
• When there is a strong consensus among teachers regarding a prediction, the label
they mostly agree on does not reveal any specific information about a given training
point.

• To provide rigorous guarantees of differential privacy, the aggregation mechanism
counts the votes assigned to each class.

• It then adds carefully calibrated Laplacian noise to the resulting vote histogram and
outputs the class with the most noisy votes as the ensemble’s prediction.

3. Student Model:

• The final step in the PATE framework involves training a student model.
• This student model learns from the ensemble of teacher models by transferring knowl-
edge.

• Access to public data, which is unlabeled, is used for this training.

2.1 Machine Learning and Generative Deep Learning 13
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• To limit the privacy cost associated with labeling public data, queries are made to the
aggregation mechanism for a subset of the public data.

• The student model is trained in a semi-supervised manner using a fixed number of
queries.

• It’s important to note that each additional ensemble prediction increases the privacy
cost, so the number of queries is bounded.

The PATE framework provides a privacy-preserving way to transfer knowledge from a set of
teacher models to a student model while maintaining strong privacy guarantees. This approach is
particularly valuable when dealing with sensitive data that requires protection during the training
process.

The training set is partitioned into િ disjoint subsets ટ� ۩ ટિ and the િ teachers classifiers ય� ۩ યિ
are trained separately on these િ partitions. Let ફજયઠ � \િ^  િ ࠞ ય be the ensemble of ય teacher
models Let’s denote with ૌ an input, ુ is number of possible class labels, ા ࠞ <ુ> a label of a given
class, and ૂા	ૌ
 � ]િ ࡌ િ ࠞ ય  િ	ૌ
 � ા] the number of teachers that output class ા for ૌ.
When classifying a new instance ૌ, the ફજયઠ framework introduces noise during the aggregation
process to create ambiguity and achieve a differentially private output. This is necessary because
a simple majority-based aggregation could result in a situation where the top choice depends on
the voting input of a single teacher.

ફજયઠൔ	ૌ
 � BSH NBYા ࠞ<ુ> ૂા	ૌ
 � ા
where � ۩ ુ are ઽ�ઽ�હ� ધશૄ	� ൔ
 random variables following the Laplace distribution on location�with scale ൔ.
The parameter ൔ is controlling how much noise is added, in turn guaranteeing privacy. A single
query to the ફજયઠൔ mechanism is  �ൔ  �-differentially private.

࣏࣑࣓ࣛࣞ' ��� ] Training of ensemble of teachers is trained on disjoint subsets and a student model trained on
public data labeled by the ensemble [Papernot et al., 2018].
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In the work by [Papernot et al., 2018], a modification to the PATE aggregation mechanism is
introduced, where Gaussian noise is sampled instead of Laplacian noise. This change is made
because the tails of the Gaussian distribution diminish more rapidly compared to those of the
Laplacian distribution, resulting in less noisy aggregation. The reduced noise levels increase the
likelihood that the aggregated votes from the teachers lead to the correct consensus answer. This
modification is particularly valuable when PATE is applied to learning tasks with a large number
of output classes, as it helps improve the quality of the consensus answer.
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Privacy-Enhancing Technologies (PETs) encompass two primary categories, one focusing on input
privacy and the other on output privacy.

1. Input Privacy: In the context of input privacy, the Computing Party is unable to access
or derive any input values provided by Input Parties. Additionally, the Computing Party
cannot access intermediate values or statistical results that are available at the Computing
Parties during the data processing phase. This ensures that sensitive input data remains
confidential and protected from unauthorized access or exposure.

2. Output Privacy: Output privacy, often referred to as “statistical disclosure control,” is
concerned with altering the results of a computation in such a way that the output data
cannot be used to reverse engineer or deduce the original inputs. This safeguards the
privacy of individuals or entities who provided the input data, preventing any potential
compromise of their sensitive information.

These two categories of PETs play a crucial role in safeguarding the privacy of data through-
out its processing and dissemination, ensuring that sensitive information remains secure and
confidential.

࣏࣑࣓ࣛࣞ' ��� ] Different types of PETs [United Nations, 2023]

Protecting sensitive information and ensuring privacy in various IT scenarios is a complex task
that requires a combination of techniques and technologies. Here are some of the key methods
and approaches used to safeguard data privacy:

2.2 Privacy Enhancing Techniques (PETs) 15
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1. Data Anonymization: Data anonymization involves modifying or masking identifiers in a
dataset to make it difficult to identify individuals. Techniques include removing, substituting,
distorting, generalizing, or aggregating data, which aims to protect both direct identifiers
(explicit personal information) and indirect identifiers (attributes that, when combined with
other data, could identify a user).

2. Pseudonymization: Pseudonymization involves replacing private identifierswith fake identi-
fiers or pseudonyms to hide key identifiable information. This technique preserves statistical
accuracy and data integrity.

3. Perturbation: Perturbation techniques involve adding crafted random noise to sensitive
data to hide patterns and prevent privacy data mining attacks.

4. Synthetic Data: Synthetic data generation involves using algorithms to create artificial
datasets with specific statistical patterns or models, rather than altering the original dataset.
This approach can provide a balance between data utility and privacy protection.

5. k-Anonymity, l-Diversity, t-Closeness: These are methods used in cloud-based applica-
tions to ensure data privacy. They focus on ensuring that each record in a dataset is not
distinguishable from at least k-1 other records, adding diversity to sensitive attributes,
and ensuring that the distribution of sensitive attributes is similar to a trusted distribution,
respectively.

It’s important to note that while anonymizing personal data is a valuable privacy protection
measure, there can still be risks of re-identification, especiallywhen machine learning applications
are involved. Asmachine learning techniques advance, the potential for re-identification or privacy
breaches also increases. Therefore, it’s essential to consider a combination of privacy-preserving
techniques and stay updated on best practices to protect sensitive information in various IT
scenarios.

����� %JࢵFSFOUJBM 1SJWBDZ

Differential privacy (DP) is a robust and widely accepted framework for ensuring privacy in
data analysis. It was first introduced in 2006 by [Dwork et al., 2006b] in their seminal papers
“Calibrating Noise to Sensitivity in Private Data Analysis” and “Differential Privacy”. DP provides
a mathematical foundation for quantifying and achieving privacy in data analysis.

At its core, DP aims to quantify the maximum amount of information about individual records in
a database that could potentially be revealed by releasing the results of any computation on that
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database. It was designed to address shortcomings in earlier privacy definitions, particularlywhen
dealing with multiple releases of data or when adversaries have access to side knowledge.

One key feature of differential privacy is its reliance on randomness in the design of privacy-
preserving algorithms. This randomness is essential to ensure that no individual’s data can be
accurately inferred from the algorithm’s outputs. It ensures that attackers cannot retrieve sensitive
information about input datasets merely based on the algorithm outputs (indistinguishability).
DP is versatile and can be applied to a wide range of data processing scenarios.

Differential privacy constitutes a strong standard guarantees for privacy for algorithms
on aggregate databases [Dwork and Roth, 2013].

In the context of differential privacy, a randomized algorithm જ ࡌ ટ ި ભwith domain ટ and rangeભ, is considered to be 	 ്
-differentially private if it satisfies the following condition:
For every pair of adjacent training datasets, હ હ ࢚ ટ, which differ by at most one training point,
and for any subset of outputs મ ࢚ ભ, the probability that the algorithm produces an output in મ
for dataset હ is bounded as follows:

1<જ	હ
 ࠞ મ> ࡸ F 1<જ	હ
 ࠞ મ> � ്
Here’s a breakdown of the parameters and their meanings:

1. The parameter  ࡌ  � � is often referred to as the privacy budget. It quantifies the level of
privacy protection provided by the algorithm. A lower  corresponds to stronger privacy
guarantees. It controls the trade-off between privacy and utility. Smaller values of  provide
stronger privacy but may limit the utility of the algorithm.

2. The parameter ് is the failure rate, and it quantifies the tolerance for cases where the
privacy bound defined by  does not hold. It allows for a small probability of deviation from
the privacy guarantee. In practice, ് is required to be very small (് ࠞ <� �>), and its value
should be chosen based on the dataset size and the desired privacy level. [That which we
call private, Erlingsson]

The term MO  ફ	જ	હ
 ࠞ મ
ફ	જ	હ
 ࠞ મ
 is known as the privacy loss. It quantifies the extent to which the privacy
guarantee may be violated when comparing the output distributions of the algorithm on datasetsહ and હ.
The original definition of -differential privacy, does not include the additive term ്. The variant
introduced by [Dwork et al., 2006a] allows for the possibility that pure -differential privacy is

2.2 Privacy Enhancing Techniques (PETs) 17



Chapter 2 Background

broken with probability ്, which is preferably a small value (e.g., smaller than ��]હ], where ]હ] is the
size of the dataset).

Intuitively, this guarantees that an adversary, provided with the output of જ, can draw almost the
same conclusions about any individual no matter if this individual is included in the input of જ
or not, so it is more a privacy standard rather than a single algorithm. In other words, it ensure
that even if an attacker has knowledge of the entire dataset, they cannot determine specific
information about any individual in the dataset.

Differential privacy is achieved by introducing random noise into the results of data analysis.
Various mechanisms can be used to add this noise, such as the Laplace mechanism, the exponential
mechanism, and the random response mechanism. The choice of mechanism depends on the
specific analysis being conducted and the desired privacy level.

The Laplace mechanism is commonly used for numerical queries in differential privacy. It adds
Laplace-distributed noise to the query results, with the magnitude of the noise determined by
the privacy budget () and the sensitivity of the query. The random response mechanism, on the
other hand, is used for scenarios like sensitive surveys, where respondents can plausibly deny
their responses. It is widely applied in statistical analysis to obtain population-level information
without revealing details about individuals.

Differential privacy differs from other privacy protection methods, like િ-anonymity or ી-diversity,
as it applies to all types of information derived from a database and addresses the challenges of
multiple releases and secondary knowledge accessible to attackers.

����� 4ZOUIFUJD %BUB

Synthetic data is a privacy protection method that aims to provide a balance between the
necessity to share information, in order to perform statistical analysis, and the requirement to
preserve the confidentiality of sensitive data. It achieves this by transforming sensitive data into
a new dataset that shares similar statistical characteristics with the original data, while avoiding
the disclosure of specific details about the original dataset. This approach is particularly valuable
for organizations that want to collaborate with external partners while safeguarding the privacy
of their sensitive data.

The primary goal of synthetic data generation is to combine two aspects: usefulness for the
statistical analysis and the preservation of confidentiality. Synthetic data include features like
data augmentation, where new data is created or existing data is expanded for validation and
verification purposes, although these aspects may fall outside the scope of privacy-enhancing
technologies (PETs).
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In the context of privacy protection, synthetic data refers to algorithmically generated data
that closely resembles the originating source of data. Generative models are used to learn the
statistical distribution in the real data and generate artificial samples that mimic the original
ones. This synthetic data generation process completely breaks the one-to-one relationship
between the original and synthetic records, ensuring that there is no direct way to reverse the
synthetic records to their original counterparts. This process is irreversible, providing strong
privacy protection.

Deep learning models used for synthetic data generation have the computational capacity to
handle complex tasks. However, they may memorize patterns from the training data, which can
lead to privacy leaks in the synthetic data. To enhance privacy in the synthetic data generation
process, additional layers of privacy, such as differential privacy, can be added.

There are different types of synthetic data, each with its benefits and drawbacks:

1. Fully Synthetic Data: This type of synthetic data does not contain any original data. It
makes re-identification of any individual unit nearly impossible, and all variables are still
fully available.

2. Partially Synthetic Data: In partially synthetic data, only sensitive data is replaced with
synthetic data. This approach relies on imputation models to ensure that the overall
structure of the data remains intact.

3. Hybrid Synthetic Data: Hybrid synthetic data is derived from a combination of real and
synthetic data. It maintains the relationship and integrity between variables while investi-
gating the underlying distribution of the original data. Each data point from the real data is
paired with its nearest neighbor in the synthetic data to create a hybrid dataset.

The choice of the type of synthetic data depends on the specific use case, the level of privacy re-
quired, and the need to maintain data utility for analysis while protecting sensitive information.
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Data anonymization (or masking) techniques are a crucial aspect of privacy protection, focusing
on the removal or concealment of Personally Identifying Information (PII)while leaving other
less sensitive attributes in the dataset untouched. PII includes information such as names, phone
numbers, or other details that can directly identify individuals. In contrast, the remaining attributes,
often referred to as quasi-identifiers, are typically less sensitive but can still pose privacy risks
when combined with external data sources.
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࣏࣑࣓ࣛࣞ' ��� ] Data masking techniques removes PII [O. Fdal]

The vulnerability of masked data to linkage attacks is a key consideration. Even though PII is
removed or obfuscated, the presence of quasi-identifiers and the potential for re-identification
through external data sources can still pose a significant privacy risk. This is why regulatory
frameworks often do not consider masked data to be truly “anonymous” for legal and privacy
compliance purposes. Instead, such data is typically still classified as personal data and subject to
privacy regulations.

“Generally speaking removing directly identifying elements in itself is not enough to ensure
that identification of the data subject is no longer possible [Parliament, 2014].” 1
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In summary, traditional methods almost systematically present re-identification related risks.
To counter these risks and protect privacy, various methods have been developed, includingિ-anonymity, ી-diversity and ૈ-closeness:
1. િ-Anonymity: િ-anonymity is an anonymization technique that ensures that the information
about an individual in a published dataset cannot be distinguished from at least િ-1 other
individuals in the same dataset. In other words, it groups individuals with similar attributes
into equivalence classes, and within each class, there are at least િ-1 individuals who share
the same attributes.

2. ી-Diversity: ી-diversity is another privacy protection method that focuses on the diversity
of sensitive attributes within equivalence classes. A dataset is considered ી-diverse if each
equivalence class, formed based on attributes shared by individuals, has at least ી (where ી is
typically greater than or equal to 2) different values for sensitive attributes. This ensures
that each group is diverse in terms of sensitive information, making it harder for an attacker
to infer sensitive details about a specific individual.

3. ૈ-closeness: ૈ-closeness is a further refinement of the concepts of િ-anonymity and ી-
diversity. In a dataset, ૈ-closeness ensures that the distribution of sensitive attribute values

1European Parliament, Article 29 Data ProtectionWorking Party

20 Chapter 2 Background

https://www.statice.ai/post/how-manage-reidentification-risks-personal-data-synthetic-data
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf


within a group (equivalence class) of records is not significantly different from the overall
distribution of sensitive values in the entire dataset.િ-anonymity maintains privacy by editing, via suppression and generalization, quasi-identifiers so

that each combination of them is present at િ times. Since the same quasi identifiers are shared
between different rows, k-anonymity prevents unique joints that expose sensitive attributes.
However, research showed [Bellovin et al., 2018] that k-anonymity is subject to attribute inference
attacks.

࣏࣑࣓ࣛࣞ' ��� ] The k-anonymity hides individual records within a group of similar records [O. Fdal]

The other techniques, such as ી-diversity or ૈ-closeness, increase the complexity and reduce the
utility of the data, assuming that some attributes are more special than others. To completely
remove privacy risks, one would need to remove most, if not all data, reducing the data utility to
zero.

����� 4FDVSF .VMUJ�1BSUZ $PNQVUBUJPO

Securemulti-party computation (also known as sMPC) is a significant cryptographic technological
advancement that enables multiple independent entities to perform computations on their private
data without the need for data disclosure. The core idea behind sMPC is to facilitate calculations
on sensitive data while maintaining its confidentiality.

The fundamental principle of MPC is to limit the knowledge of the participants, ensuring that
they only have access to the output of the computation and their individual inputs. This approach
helps address the issue of code assurance, where parties involved in the computation need to be
confident that the function being computed on their shared data remains the same as agreed
upon.

However, it’s important to note that both sMPC and homomorphic encryption, which is another
technique for secure computation, often comewith high communication and computation costs.
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Homomorphic encryption (HE) is a powerful cryptographic technique that allows for computa-
tions to be performed directly on previously encrypted data. This method enables an entity that
supplies data to outsource a computation to a third party while keeping the data confidential.
The process of homomorphic encryption generally works as follows:

1. The entity that owns the data encrypts it using a homomorphic function, resulting in
encrypted data.

2. This encrypted data is then shared with a third party that is responsible for performing
calculations or operations on it.

3. The third party performs the desired computation on the encrypted data and returns the
result, which is also encrypted.

4. Finally, the original data owner decrypts the result, allowing them to obtain the outcome of
the calculation on the original plain-text data.

Homomorphic encryption ensures that no party, other than the data provider who holds the nec-
essary decryption key, gains access to any information about the data during the computation.

While homomorphic encryption offers strong confidentiality guarantees to the data provider,
there are practical limitations in terms of code assurance and confidentiality, particularly for the
entity responsible for the computation as the algorithm provider may have less assurance about
the confidentiality of their algorithm.

Homomorphic encryption has diverse applications in various fields, specially in healthcare, where
strict regulations on patient data confidentiality are in place.
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In distributed learning, the common configuration involves multiple entities owning sensitive data,
and a central server that assists them in the training process, preserving the confidentiality of
their data. Two of the prominent protocols in this area are Federated Learning and Split Learning,
each with its own variations, advantages, and limitations.

These are not standalone solutions for ensuring data privacy but rather some additional features
to consider when designing the confidentiality of output data. It primarily focuses on improving
the security of input data exchanged among the participating entities and those responsible for
the computations. The level of privacy achieved depends on the specific protocols, techniques,
and parameter settings used.
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A Trusted Execution Environment (TEE) is a secure hardware and an isolated software envi-
ronment built into modern CPUs for executing code and processing data with a high level of
confidentiality and security. TEEs offer solutions to the following challenges:

1. Input Confidentiality: TEEs ensure the confidentiality of input data, preventing unautho-
rized access to sensitive information provided as input to a computing process.

2. Code Confidentiality: TEEs protect the confidentiality of the code used to perform op-
erations on data. This includes ensuring that the code remains secure and hidden from
potential adversaries.

3. Code Security Assurance: TEEs provide security assurances for the code executed within
the trusted environment, making it resistant to tampering, reverse engineering, and other
attacks.

TEEs are designed to be highly resistant to attacks, even by privileged users or attackers with
physical access to the hardware. Examples of popular TEE technologies include Intel Software
Guard Extensions (SGX) and AMD TrustZone, which are widely used in cloud and edge computing
environments.
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In the following paragraphs, we will provide a brief introduction on the different privacy attack
models and the various types of attacks that are directed towards the assets of machine learning
(ML) processes. We initially categorize these adversary models based on the level of access that
the attacker possesses:

• White-box adversaries: These adversaries possess comprehensive knowledge about the
model, denoted as ન	ૌ
, including its parameters represented as . Additionally, they may
also have partial access to the raw data, denoted as ળ.

• Black-box adversaries: In contrast, black-box adversaries lack any information concerning
the model and its parameters. However, they have the capability to interact with the model
by making queries and observing its responses.

Another important consideration is the phase in which the attack is executed, whether it occurs
during the training or inference stage [Oliynyk et al., 2023]:

2.3 Privacy Attacks 23



Chapter 2 Background

• Training Phase: In this scenario, the adversary’s objective is to gain insights into the model,
which might involve accessing a summary, partial, or even the entirety of the training data.

• Inference Phase: Here, the adversary collects information about the model’s characteristics
by observing the inferences made by the model during its operational phase.

࣏࣑࣓ࣛࣞ' ���� ] A taxonomy of attack models against GANs [Chen et al., 2020]
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In this particular type of attack, the adversary’s objective is to ascertain whether a given data
point, denoted as ૌઽ, was originally part of the raw dataset or if it was included in the training set,
denoted as ળ.
The attack strategy involves several key steps:

1. Data Generation: The attacker begins by generating data that closely resembles the distri-
bution of the original dataset. This is accomplished by making queries to machine learning
models and capturing their responses.

2. Local Model Training: Subsequently, the attacker employs the generated data to train local
models. These local models are designed to mimic the behavior of the original machine
learning models.

3. Classifier Development: The attacker then utilizes the data generated by these local models
to train a classifier. The purpose of this classifier is to determine whether a given data
record belongs to the original training dataset.

Membership inference attacks can have implications for both the privacy of the raw dataset and
the privacy of the feature datasets. For instance, an adversary could employ this attack to infer
whether a specific individual’s record was used in training a machine learning model designed to
detect the presence of a particular medical condition [Hayes et al., 2018, Shokri et al., Carlini
et al.].
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It is important to note that this attack can be executed by a black-box adversary, meaning that
the attacker does not possess any knowledge about the internal structure or parameters of the
machine learning models but can still perform these inference attacks by querying the models
and observing their responses.
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Model inversion attacks and attribute inference attacks infer class features and/or construct class
representatives about the training dataset ળ, given that the adversary has some access (either
black-box or white-box) to a model ન	ૌ
. [Fredrikson et al., 2015, Zhang et al., 2020].
Model inversion attacks enable the adversary to leverage the model’s output to infer the values
of sensitive attributes that were utilized as input to the model. This type of attack is not limited
to the level of access an attacker has, as even a limited black-box attacker, who can interact with
the model by making queries and collecting its responses, can perform it.

Furthermore, it is worth noting that it is not uncommon for adversaries to employ a two-step
approach. They may initially execute a model extraction attack to obtain a copy of the modelન	ૌ
. Subsequently, they utilize this extracted model to carry out a model inversion attack,
thereby inferring information about the training dataset.

࣏࣑࣓ࣛࣞ' ���� ] An image recovered using a model inversion attack (left) and a training set image of the victim
(right) [F. Mireshghallah, 2020].
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The primary objective of a model extraction attack is to create an approximate model, denoted
as ન	ૌ
, that closely mimics the behavior of the original model, ન	ૌ
. This is typically carried
out by an adversary with black-box access, who lacks any prior knowledge about the machine
learning model’s parameters or training data. The ultimate goal of this attack is to effectively
steal the real model’s parameters.
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The attack relies on a fundamental intuition, namely, the utilization of information-rich outputs
provided by ML prediction APIs. These outputs often include high-precision confidence values
in addition to class labels. By analyzing and leveraging these rich output details, the adversary
endeavors to construct an approximation that accurately reflects the behavior of the original
model [Takemura et al., 2020, Reith et al., 2019]. The success of the attack is directly related to
the accuracy of the constructed approximation.
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The objective of this attack is to uncover the identity of an individual who has provided their data
to a dataset. Even in cases where model owners have initially anonymized the dataset, either
by publishing the raw dataset વ or feature datasets ળ� and ળ�, this attack has the potential to
compromise the privacy of data contributors.

To execute this attack successfully, the adversary typically requires white-box access to the
dataset. However, it is important to note that it can also be performed with black-box access,
through a series of chained attacks [Qian et al., 2016, Gambs et al., 2014].
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The objective of this attack is to reconstruct a raw dataset, denoted as વ, by employing a process
of reverse engineering on the feature training dataset, ળ�, or the validation dataset, ળ�. In most
cases, this type of attack necessitates white-box access to a model that explicitly embeds the
feature datasets within its structure. The ability to access the internal workings and parameters
of the model is crucial for successfully executing this attack [Al-Rubaie and Chang, 2016].
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In recent years, significant advancements in neural networks haveyielded remarkable achievements
across a diverse range of applications, such as image classification and language representation,
among many others. These breakthroughs owe a substantial part of their success to the existence
of extensive and representative datasets used for training neural networks.

These datasets are frequently collected from crowdsourced contributions and may encompass
sensitive information. The utilization of such data necessitates the development of techniques
that can satisfy the performance requirements of these applications while simultaneously provid-
ing sound and principled privacy safeguards.
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In the context of privacy considerations, generative models offer a distinct advantage by intro-
ducing noise within the latent space, rather than directly altering the data. This approach allows
us to ensure privacy while minimizing the overall loss of information.

Various approaches have been proposed for integrating differential privacy into the generation
of data using Generative Adversarial Networks (GANs). One of the more intuitive methods is
to introduce sampled noise at the end of the generation process, thereby applying obfuscation
directly to the output data to enhance privacy. However, this approach frequently results in a
trade-off with utility, where the data’s usefulness may be compromised.

In this work, the two primary approaches examined focus on incorporating differential privacy
directly into the training process. These methods aim to strike a balance between privacy
protection and preserving the utility of the generated data.

The first approach involves integrating differential privacy (DP) into the training process itself.
This is achieved by adding a small amount of noise, typically sampled from a Gaussian or Laplacian
distribution, to the gradients that are already clipped. Notable implementations of this approach
include DPGAN, proposed by [Xie et al., 2018], and DP-CTGAN by [Ling et al., 2022].

The second approach explores the use of the Private Aggregation of Teacher Ensembles (PATE)
mechanism, initially introduced in the work by [Papernot et al., 2018, 2017]. This mechanism
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provides guarantees of 	 ്
-privacy and is being considered within GAN training, with the aim
to enhance the privacy-preserving aspects of the process.

Here are some notable approaches for achieving differential privacy in data generation and
machine learning tasks:

• MultiplicativeWeights Exponential Mechanism (MWEM): This approach combines Multi-
plicative Weights and Exponential Mechanism techniques to achieve differential privacy.
It is relatively straightforward yet effective and requires fewer computational resources,
resulting in shorter runtime.

• Differentially Private Generative Adversarial Network (DPGAN): DPGAN introduces noise
to the discriminator of a GAN to enforce differential privacy, through a Differentially Private
Stochastic Gradient Descent (DPSGD). It has been used with various data types, including
images and electronic health records (EHRs).

• Differentially Private Conditional Tabular GAN (DP-CTGAN): DP-CTGAN utilizes the state-
of-the-art CTGAN for synthesizing tabular data and applies DP-SGD, as in DPGANs, to
ensure differential privacy. It is well-suited for tabular data, helps address issues like mode
collapse, but may require extensive training time.

• Private Aggregation of Teacher Ensembles Generative Adversarial Network (PATEGAN):
This is a modification of the PATE framework applied to GANs to preserve differential
privacy in synthetic data generation. It is an improvement over DPGAN, particularly for
classification tasks. PATEGAN ensures privacy by transferring knowledge from an ensemble
of “teacher” models trained on disjoint data partitions to a “student” model.

• PATE-CTGAN: Similar to DP-CTGAN, PATE-CTGAN utilizes CTGAN for tabular data syn-
thesis but applies the Private Aggregation of Teacher Ensembles (PATE) mechanism for
ensuring differential privacy. It is suitable for tabular data and mitigates problems associated
with mode collapse.

• Qualified Architecture to Improve Learning (QUAIL): QUAIL is an ensemble method de-
signed to enhance the utility of synthetically generated differentially private datasets for
machine learning tasks. It combines a differentially private synthesizer with an embedded
differentially private supervised learning model to produce flexible synthetic datasets with
high machine learning utility.

To create differentially-private synthetic records, models are trained using a DP algorithm to learn
the original data distribution. Consequently, the synthetic data inherits the theoretical privacy
guarantees offered by DP.
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These multiple layers of privacy protection serve to significantly enhance the privacy of the syn-
thetic data. Nevertheless, it’s important to recognize that no technique can ensure perfect privacy
while still maintaining utility. Regulations such as the General Data Protection Regulation (GDPR)
mandate that companies must evaluate the residual risks of re-identification, acknowledging that
complete privacy may necessitate a trade-off with data utility.
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Differential privacy can be seamlessly integrated into the deep learning framework by introducing
random noise into the Stochastic Gradient Descent (SGD) algorithm. This novel approach, known
as DP-SGD, was introduced and outlined in [Abadi et al., 2016].

In DP-SGD, the standard mini-batch gradient estimate used in SGD is replaced with a privatized
version. In this modified version, the gradient of each training example is clipped to a maximum
norm.

࣏࣑࣓ࣛࣞ' ��� ] Stochastic Gradient Descent (SGD) and Differentially Private SGD (DP-SGD). To achieve
differential privacy, DP-SGD clips and adds noise to the gradients, computed on a per-example
basis, before updating the model parameters. Steps required for DP-SGD are highlighted in
blue; non-private SGD omits these steps [Papernot and Thakurta]]

This clipping operation constrains the sensitivity of the learning process to each individual training
example. Additionally, Gaussian noise, with a standard deviation proportional to this sensitivity,
is added to the sum of the clipped gradients. This noise effectively conceals the contribution of
any single example to the sum, thus providing privacy guarantees. Note that raising the bound
for gradient clipping also increases the variance of the Gaussian noise [Ryffel et al., 2018].
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DP-SGD offers a robust and practical mechanism for implementing differential privacy in deep
learning, ensuring that individual training examples do not overly influence the learning process
while preserving privacy.

Algorithm 1: Differentially Private SGD
Data: Testing set ૌ
Input : Training examples <ૌ����ૌૂ>

Loss functionݖ	
 � � ࠧઽݖ	 ૌઽ
,
Learning rate ૈ,
Group size ધ,
Gradient norm bound ઞ,
Total privacy budget ൚ૈૃૈશી

1 Initialize �
2 for ૈ � � ࡌ ય do
3 Take a batch of data samplesૈݦ from training, with sampling probability ધ
4 ઝ � [ૈݦ[
5 ঠ Compute gradient
6 for ࠖઽ ࠞ ધૈ do
7 compute ઼ૈ	ૌઽ
 ަ ࠝૈݖ	ૈ ૌઽ

8 end
9 ঠ Clip gradient
10 ʿ઼ૈ	ૌઽ
 ަ ʿ઼ૈ	ૌઽ
�ુશૌ	� ]] ʿ઼ૈ	ૌઽ
]]�ઞ 

11 ঠ Add noise
12 ʿ઼ૈ ަ �ધ 	ࠧઽ ઼ૈ	ૌઽ
 � ଉ 	� ൜�ઞ�I


13 ঠ Descent
14 ૈ�� ަ ૈ ࠨ ૈ ʿ઼ૈ
15 end
Output: ૈ

16 Compute the overall privacy cost 	 ്
 with a privacy accounting method
One of the primary challenges encountered in training models with differential privacy is the issue
known as the “curse of dimensionality,” as highlighted by [Bassily et al., 2014]. It refers to the
fact that the accuracy of models trained with privacy protection tends to degrade as the number
of dimensions increases. Regrettably, lower bounds in this field suggest that this dependency on
dimensionality is an inherent constraint.

To effectively bound the impact of any training example, DP-SGD introduces two key alterations
in every gradient step. First, it restricts each example’s gradient contribution by imposing a fixed
limit, often accomplished by capping the l2 norm of individual gradients. Second, it introduces
random Gaussian noise with a magnitude proportional to the clipping norm into the combined
gradient of each batch before propagating it backward to update the model parameters.

These modifications collectively create a new noise floor at each step of gradient descent.
Consequently, the unique signal contributed by any individual example remains below this noise
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floor. This fundamental change allows differential privacy to be guaranteed for all training
examples, ensuring that no single training example can influence excessively the privacy of the
model. This approach is explained in more details in “The Algorithmic Foundations of Differential
Privacy” [Dwork and Roth, 2013].
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The necessity of this model arise from the unique properties of tabular data, such as correlated
features, blended data types such as discrete or continuous features, difficulty in learning from
highly sparse vectors and potential mode collapse due to high class imbalance. To mitigate these
issues, [Ling et al., 2022] choosed CTGAN [Xu et al., 2019] as the underlying generative model.

Both the DPGAN and the DP-CTGAN frameworks are designed to introduce noise during the
optimization step of the network. A noteworthy property of any 	 ്
-differential privacy mecha-
nism is its post-processing robustness, which ensures that anymapping operation performed after
an already differentially private mechanism will also preserve differential privacy. In the context
of GANs, this property is crucial, as it is frequently employed on the discriminator, contributing
to the overall privacy guarantees of the model.

࣏࣑࣓ࣛࣞ' ��� ] DP-CTGAN. Sensitive training data is fed into a conditional generator. At the same time,
random perturbation is added to the critic to enforce privacy [Ling et al., 2022].

The integration of a differentially private discriminator in the optimization process of the generator
guarantees that the resulting generative network is also differentially private. This ensures that
privacy preservation is maintained throughout the generation of synthetic data.

In the case ofDP-CTGAN, the privacyguarantee ismeticulously tracked using a privacy accountant.
This approach incorporates a differential privacy framework within a CTGAN model to capture
correlated feature patterns and complex data distributions while preserving privacy.

It’s worth noting that the standard vanilla GAN lacks the ability to generate label-conditional data
points. Therefore, a conditional GAN (CGAN), a well-established variant of the standard GAN, is
employed to generate non-differentially private synthetic data.
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Algorithm 2: Training DP-CTGAN
Data: Training data ଅૈશઽૂ
Input : Conditional generator parameters ൧ઢ,

Critic parameters ൧ઞ,
Step size ે,
Batch size ુ,
Gradient clipping bound ,
Noise scale ൜,
Privacy budget 	� ്�


1 while  ࡸ � do
2 for � ࡸ ા ࡸ ુ do
3 હ ަ number of discrete column from ଅૈશઽૂ
4 હઽ ަ one-hot discrete vector
5 Create masks \ુ� ��� ુઽ ��� ુહ^ા
6 Create conditional vectors સૃૂહા from masks
7 ঠ Sample from multi-variable dist.
8 ા ަ ન	� I

9 ঠ Generate synthetic data
10 ʽા ަ ઢૂશૈૃ	ા સૃૂહા

11 ঠ Get real data
12 ા ަ રૂઽ ૃુ	ଅૈશઽૂ સૃૂહા

13 for � ࡸ િ ࡸ ે do
14 sample સૃૂહ ાિ, fake data ʽ ાિ, and real data  ાિ
15 end
16 ઞݖ ަ �ે ࠧિે�� ઞઽૈ ઽસ	 ʽ ાિ સૃૂહ ાિ
 ࠨ ઞઽૈ ઽસ	 ાિ સૃૂહ ાિ
 � ઢݖ
17 ঠ Generate noise
18 ൗ ަ ଉ ે � 	൜ઞ
ݔ�
19 ൧ઞ ަ ൧ઞ ࠨ ������ ࣎ જટજનࠝ൧ઞ	ݖઞ � ଆଋݖ�� � ൗ

20 ઢݖ ަ �ુ ࠧાુ�� ઞૃેેઠૂૈૃૄ્	 ʽહઽા ુઽ
 ࠨ �ુ�ે ࠧુ�ેિ�� ઞઽૈ ઽસ  ʽિે સૃૂહિે
21 ൧ઢ ަ ൧ઢ ࠨ ������ ࣎ જટજનࠝ൧ઢݖઢ
22  ަ query ଃwith ്�
23 end
24 end
Output: Parameters ൧ of a differentially private generator ଆ

25 Ling et al. [2022]
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The PrivateAggregation ofTeacher Ensembles (PATE) of GAN, introduced in [Jordon et al., 2022b],
is a novel approach designed to generate synthetic multivariate data while preserving the privacy
of the training data. It represents a variation of the standard GAN architecture, where the
traditional discriminator is replaced with the PATE mechanism.
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In this modified setup, instead of a single discriminator, denoted as ટ, that is trained in a con-
ventional adversarial manner with the generator ઢ, there are િ teacher-discriminators, namely,ય� ય� ��� યિ, along with a student discriminator મ. A notable deviation from the conventional GAN
training is the asymmetrical nature of the adversarial training process. In PATE-GAN, the teachers
are trained to improve their loss concerning the generator ઢ, while ઢ is trained to enhance its loss
with respect to the student મ, which, in turn, is trained to minimize its loss concerning the teachers.
This asymmetric training process constitutes a unique feature of the PATE-GAN framework.

࣏࣑࣓ࣛࣞ' ��� ] Training procedure for the student-discriminator and the generator [Jordon et al., 2022b].

In the PATE-GAN framework, the generator ઢ, as in the standard GAN architecture, is trained to
minimize its loss in relation to the student discriminator. Formally, it is represented as a functionઢ	࣎� ઢ
, parametrized by ઢ, and accepts random noise [ ࡒ 6OJG	<� �>હ
 as its input.
For a given set of ૂ independent and identically distributed (i.i.d.) samples, [� [� ۩  [ૂ, drawn
from the uniform distribution 6OJG	<� �>હ
, the empirical loss of the generator ઢ at parameter
configuration , with the student discriminator મ held constant, is defined as follows:

ઢݖ 	ઢ� મ
 � ૂા�� MPH � ࠨ મ ઢ [ા� ઢ �
Then each teacher-discriminator is trained to perform classification tasks, much like in a standard
GAN network. However, there is a crucial distinction: each teacher-discriminator only has access
to its own partition of the real data, which is derived from a disjoint subset of size ]ટઽ] � ]ટ] , where represents the total number of teachers. Formally, these teachers are represented as functionsય�	࣎� �ય 
 ય�	࣎� �ય 
 ۩  યિ	࣎� િય 
 ࡌ ଏ ި <� �>, with each function parametrized by  ઽય.
For a given set of ૂ independent and identically distributed 	ઽ�ઽ�હ�
 samples drawn from 6OJG	<� �>હ
,
denoted as [� [� ۩  [ૂ, the empirical loss of teacher ઽ, with weights  ઽય, is defined as follows when
the generator ઢ is held constant:
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ݖ ઽય  ઽય � ࠨ ༓Vࠞଅઽ MPH યઽ V�  ઽય � ૂા�� MPH � ࠨ યઽ ઢ [ા �  ઽય༛ �
The student classifier, denoted as મ, is trained by an unlabeled dataset ଋ � \ૌઽ^દઽ��. From this
dataset, each sample, ૌઽ is subjected to the standard PATE mechanism, which provides a dif-
ferentially private label ʽ્ઽ. This process results in the creation of a new dataset ଋ  � \ૌઽ ʽ્ ઽ^દઽ��,
where each sample is associated with its corresponding noisy label. The student classifier મ is
then trained on this dataset ଋ  to make predictions based on the noisy labels.

The student, denoted as મ, which has been trained on the dataset ଋ  where labels
were generated in accordance with the ફજયઠൔ mechanism using ൔ � દ� , satisfies	ൎ �
-differential privacy with respect to the original data ટ.

This property of the differentiable student, which can be implemented using any classifier such as
a neural network, results in it incurring no privacy costs when processing input and producing an
output. The sole privacy cost is associated with acquiring the data used for training the student.

The student discriminator is introduced with the goal of emulating the behavior of the ensemble
of teachers, as it is trained on teachers-labeled samples. Consequently, the student model can
be trained privately without the need for public data, and the generator can leverage this process
to enhance the quality of the generated samples.

The training data for the student is obtained by taking ૂ independent and identically distributed
(i.i.d.) samples from the uniform distribution 6OJG <� �>હ, denoted as [� [� ۩  [ૂ. Next, ૂ samples
are generated using the generator, resulting in V̔� V̔� ۩  V̔ૂ, where V̔ા � ઢ [ા. These gener-
ated samples are then labeled by the teachers using the 1"5&ൔ mechanism, and the labels are
represented as ા � 1"5&ൔ V̔ા.
Subsequently, the student, denoted as મ	࣎� મ
 ࡌ ଏ ި <� �>, is trained with the objective of
maximizing the standard cross-entropy loss on this teacher-labelled data:

મݖ 	મ
 � ૂા�� ા MPH મ V̔ા� મ � � ࠨ ા MPH � ࠨ મ V̔ા� મ
For a fixed value of ൔ, it’s important to note that having more teachers in the ensemble results
in the teacher-labelled dataset being less noisy. When more teachers are involved, the noise
added becomes smaller relative to the individual teacher’s counts, ૂા. This trade-off introduces a
delicate balance.

On one hand, with a small number of teachers, the noise may be too prominent, rendering the
output meaningless or unreliable due to the excessive perturbations introduced by the privacy
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mechanism. On the other hand, if there are a large number of teachers, there is less data available
to train each teacher, which can also compromise the quality of the output. Despite the reduction
in noise, the limited training data may lead to inaccurate or unreliable results.

This can be traduced in the following algorithm:

Algorithm 3: PATE-GAN Algorithm
Data: Partition dataset in િ subsets ଅ� ��� ଅિ of size ]ଅ ]િ
Input : Number of teachers િ,

Noise ൔ,
Number of training steps for each teacher/student ૂય ૂમ,
Batch size ષ

1 ࠖ ી � � ��� ધ ࡌ ൊ	ી
 � �
2 while ʽ �  do
3 for ૈ� � � ��� ૂય do
4 Collect ૂ samples \� ��� ૂ^ ި વશ, from random noise distribution ફવ
5 for ઽ � � ��� િ do
6 Collect ૂ samples \ૉ� ��� ૉૂ^ ި રશ, from disjoint set ଅા
7 ঠ Update teacher યઽ using SGD
8 ࠝ ઽય ࠨ ࠧહા�� MPH યઽ Vા � MPH � ࠨ યઽ ઢ [ા
9 end
10 end
11 for ૈ� � � ��� ૂમ do
12 Collect ૂ samples \� ��� ૂ^ ި વશ from random noise distribution ଋવ
13 for ા � � ��� ૂ do
14 ʽૉા ަ ઢ	ા

15 ʽા ަ ફજયઠൔ	ૉઽ
 for ા � � ��� ૂ
16 ঠ Update moments accountant
17 ૅ ަ ��ൔ]ૂૂࠨ��]� FYQ	ൔ]ૂૂࠨ��]

18 for ી � � ��� ધ do
19 ൊ	ી
 ަ ൊ	ી
 � ુઽૂ �ൔ�ી	ી � �
 MPH ༁	� ࠨ ૅ
  �ൔૅીࠨ�ૅࠨ� � ૅ�ൔી༉
20 end
21 end
22 ঠ Update student using SGD
23 ࠝમ �ાૂࠧࠨ� ા MPH મ  ʽૉા � 	� ࠨ ા
 MPH મ  ʽૉા
24 end
25 Collect ૂ samples \� ��� ૂ^ ި વશ from random noise distribution ଋવ
26 ঠ Update the generator using SGD
27 ࠝઢ ࠧઽૂ�� MPH 	� ࠨ મ 	ઢ	ઽ



28 ʽ ަ ુઽૂી ൊ	ી
�MPH	 �് 
ી
29 end
Output: ઢ

30 Jordon et al. [2022b]
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Data quality is highly dependent on the context. When evaluating the quality of differentially
private synthetic data, it is mandatory to keep in mind the specific needs and requirements
of those who work with this type of data. This could help developing appropriate measures
to tune better the models according to specific use cases and goals for the project. In this
context, balancing privacy and utility is very challenging and therefore most balanced metrics
were implemented to investigate the different trade-offs when generating new private data.
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First, to evaluate the quality of the generated synthetic datasets, a set of ML models for classifi-
cation are performed in three different training-testing settings:

• Setting TRTR: the predictive models are trained on the real training set and assessed their
performance on the real testing set.

• Setting TSTR: the predictive models are trained on the synthetic training set and assessed
their performance on the real testing set.

• Setting TSTS: the predictive models are trained on the synthetic training set and assessed
their performance on the synthetic testing set.

The first one is the standard setting, and therefore it is considered as starting point when
benchmarking the different results. Then, by assessing the predictive performance on real data
for models trained on synthetic data (TSTR), we can determine howwell the synthetic data is
able to capture the relationship between the features and labels. Intuitively, synthetic data that
performs well in this setting can be used to train models without the need for real data.

Another important aspect is to evaluate the consistency of relative performance between two
algorithms when trained and tested on synthetic data (TSTS), compared to when trained and
tested on real data (TRTR). A basic requirement is that if model 1 outperforms model 2 on real
data, the same should hold true for synthetic data. This ensures that researchers can use the
synthetic data to select the best method for their application to the real data or to provide it to
the data-holder for real data testing.
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The performance of the datasets generated by these differentially private generative models is
assessed by training a set of binary classifiers, from the scikit-learn python library [Pedregosa
et al., 2011], namely:

1. Logistic Regression
2. Random Forest
3. AdaBoost
4. Bagging of Decision Trees
5. Gaussian Naive Bayes
6. Gradient Boosting

To obtain an overall score for the datasets, their single scores were then averaged for each type
of setting. In addition the same evaluation was considered using the repeated k-fold cross-
validation, a resampling method that iterate over different portions of the data to test and train
each single model. In this way, it is possible to obtain a more stable result since training and
testing is performed on different parts of the dataset and a more accurate estimate of the true
unknown underlying mean performance of the model on the dataset, as calculated using the
standard error.

Once the model were fitted, these have been evaluated using the accuracy, the area under the
receiver operating characteristics curve (AUC), the recall and the F1 score (also named Dice
similarity coefficient).

1. Accuracy: calculates the ratio of correctly predicted instances to the total instances in the
dataset. Higher accuracy means that the model makes a large proportion of correct predictions.

2. AUC: it measures the area under the Receiver Operating Characteristic (ROC) curve, which
quantifies how well the model distinguishes between positive and negative classes. A higher
AUC value indicates better discrimination.

3. Recall: also known as Sensitivity or True Positive Rate (TPR), is a metric that evaluates a model’s
ability to identify all positive instances in a dataset. It measures the proportion of actual positive
instances correctly predicted as positive by the model.

4. F1 Score: is the harmonic mean of precision and recall. It combines both measures to provide
a balanced assessment of a model’s performance, as considers both false positives and false
negatives.
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To assess the overall similarity of the joint distribution and determine the general quality of the
synthetic copies [Arnold and Neunhoeffer, 2021], the propensity score mean squared error
(pMSE) ratio score for synthetic data is computed [Snoke et al., 2018]. The pMSE score requires
training a discriminator, in charge of distinguishing between real and synthetic examples. High
general data quality in a synthetic dataset is indicated when the discriminator cannot differentiate
between real and synthetic instances.

This score is calculated by dividing the pMSE by the expectation of the null distribution, so it is a
way to assess howwell the model is performing relative to its expected performance. The ratio
provides a measure of howwell the model’s predictions align with expectations, a higher value of
this metric suggests better performance.
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In line with the importance of ensuring that a synthetic dataset respects the ranking of models
in terms of their prediction performances, another metric known as the Synthetic Ranking
Agreement (SRA) [Jordon et al., 2018] is considered. Let’s take the scenario where we have ધ
predictive models, denoted as � � ۩  ધ�. Furthermore, let’s assume that the performance of
model ઽ when trained and tested on the real data (Setting TRTR) is represented as જઽ ࠞ ,ݟ and the
performance of the same model when trained and tested on the synthetic data (Setting TSTS) is
denoted as ઞઽ ࠞ .ݟ We define the synthetic ranking agreement as follows:

43" \જઽ^ધઽ��  \ઞઽ^ધઽ�� � �ધ	ધ ࠨ �
 ધા��િࡴા க જા ࠨ જિ � ઞા ࠨ ઞિ � �
where க is an indicator function. It is important to note that the summation results in a value of 1
when the ordering of algorithms ા and િ is the same in both settings (real and synthetic), and it
equals 0 when the ordering in one setting differs from the ordering in the other.

The SRA can be conceptualized as the empirical probability of a comparison on the synthetic data
being “correct” meaning that the comparison on the synthetic data matches the comparison that
would be observed on the real data [Jordon et al., 2018]. This provides a measure of howwell
the rankings of predictive models are preserved when transitioning from real data to synthetic
data.

A particularly interesting property of SRA is that it does not necessarily require the synthetic data
to have the same distribution as the real data in order to be considered high-quality. This means
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that even if the generated data differs from the original data in terms of its distribution, it can
still be valuable for comparison purposes.
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To evaluate the overall privacy level of the generated datasets, multiple membership inference
attacks (MIA) were conducted at each privacy budget level.

This privacy risk assessment for synthetic datasets is based on Black-Box MIA attack using
distances of members (training set) and non-members (holdout set) from their nearest neighbors
in the synthetic dataset. By default, the Euclidean distance is used (L2 norm). The privacy risk
measure is the share of synthetic records closer to the training than the holdout dataset.

The member and non-member query probabilities are calculated based on their distance to the
nearest neighbors among synthetic samples. This distance is referred to as the “distance to the
closest record (DCR),” as defined by [Park et al., 2018].
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For the experimental setup, two publicly available datasets in particular were considered:

• the Adult Census Income1 dataset, which is an extraction done by Barry Becker from
the 1994 US Census database, were the task here is to predict whether income exceeds
$50K/yr. Here the variables include most demographic information such as the age, gen-
der, race, marital status, education level, and then the occupation and the class of work
(private/public);

• the City Employee Payroll2, which is an open data source of payroll information for all Los
Angeles City Employees, updated bi-weekly. The variables include some PII columns such as
the ID, full name, gender, race and postal code (which have been removed) and information
about their occupation, such as job type, department, type of contract (full/part time), job
status, the MOU classification code and information about their salaries and benefits;

1UCI Machine Learning Repository - Adult
2City of Los Angeles - City Employee Payroll
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The choice of considering an open data source reflects themotivation of testing these applications
on real world data, reflecting this scenario in which this sensitive type of data is made publicly
available and could also be used as input for different privacy attacks.

Both the datasets accounted of thousands of observations, therefore a sample of 10.000 obser-
vations was considered in order to accelerate the models computation time. Some preprocessing
procedures were applied before fitting the model and these include treating the missing values,
removing some influential outliers, scaling the numerical variables, recoding factors and removing
useless groups among categorical data, creating dummy variables and finally encoding the relative
dependent variables.
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Themodels in this project were implemented using Python and various open-source libraries. One
of the key components for data modeling was the SmartNoise Synthesizers3 package, developed
by OpenDP4, a collaborative community focused on building trustworthy open-source software
tools for statistical analysis of sensitive private data. The synthesizers in this package are designed
to run on PyTorch integrated with Opacus5, a scalable and optimized library for incorporating
differential privacy into PyTorch neural networks and machine learning models.

In addition, other important open-source python packages used in this project come from the
AI Privacy 360 Toolbox6, in development by IBM. This framework includes a range of tools
designed to assist in evaluating the privacy risks associated with AI-based solutions, allowing
for the exploration of trade-offs between privacy, accuracy, and performance throughout the
different stages of the machine learning (ML) lifecycle. Among these:

• diffprivlib7 [Holohan et al., 2019] is specifically designed for training differentially private
models. It follows a similar logic to the widely-used Scikit-learn framework.

• apt8, in particular the apt.risk submodule was used to perform and asses membership
inference attacks on both the real and synthetic datasets.

3SmartNoise Synthesizers
4Open Source Tools for Differential Privacy
5Opacus - train PyTorch models with Differential Privacy
6AI Privacy 360 Toolbox
7IBM Differential Privacy Library
8APT package
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Training several generative adversarial networks, specially on large data, require large computa-
tional power. Indeed, this has been the greatest limitation of these analysis, as it was not even
possible to execute these models on the payroll dataset due to its complexity, except for some
DP-CTGANs trained over few epochs ࡞) 80).
Training times took many hours to complete the different fittings, so each model was executed
within different MS Azure machines (CPU only), each with a batch size relatively small. A larger
batch size trains faster but may result in the model not capturing the nuances in the data, and as
our final goal is to generate good synthetic data, this could have led to more generalized results.
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The object was to train differentially private generative models, by investigating the effects of
the privacy constraints 	 ്
. The choice of the  parameter has been investigated by varying its
values, whereas the ്was fixed to be small, namely ് � � �	ૂ ࠭ 
.
࣏ࣕ࣌࣋5 ��� ] DPGAN synthetic dataset results

The table 4.1 presents the accuracy metrics results, which were computed using the datasets
generated by the DPGAN synthesizer under different evaluation settings. The TSTS (“train
synthetic, test synthetic”) setting is then expanded according to the various values of  fixed.
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From the results, it is possible to notice that the classification scores for synthetically generated
datasets (TSTS) are close to those of non private datasets (TRTR), for some parameters these are
even greater than the performance of classifiers on the original data. However, as outlined in
section 2, GANs tends to overfit training data, therefore this could be due to a generalization of
the synthetic data, which was not able to capture the whole variability of source data.

࣏ࣕ࣌࣋5 ��� ] DP-CTGAN synthetic dataset results

This is also suggested by the TSTR (“train synthetic, test real”) scores. The performances for these
settings are significantly smaller compared with the standard TRTR setting, implying that the
synthetic set is not a good candidate to substitute the original set. For example, the TSTR recall
and F1 score dropped by more that one third from the TRTR one.

Instead, this condition is not seen within the DP-CTGAN or PATEGAN metrics, as shown in table
4.2 and table 4.3 respectively. Here, the results show really close values between the TRTR and
TSTS settings; particularly in the PATEGAN generated set the most of these values do not surpass
the real settings. This suggests a more trustworthy model, compared to the DPGAN.

࣏ࣕ࣌࣋5 ��� ] PATEGAN synthetic dataset results

Another evidence in support of the reliability of PATEGAN is evidenced by the variables dis-
tributions, which showed a better approximation of the real counterparts, in particular when
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increasing the privacy loss, as shown in Figure 4.1. This could depend on the PATE mechanism,
which allows tighter bounds on the influence of a single sample on the discriminator, and hence
tighter differential privacy guarantees, when the differential privacy guarantee is fixed.

Although sometimes for the same privacy budget, differential privacy techniques that produce
tighter bounds and result in lower noise requirements come with increased concrete privacy risks
[Chen et al., 2020].

	B
 Variable generated with  = 0.1 	C
 Variable generated with  = 10
࣏࣑࣓ࣛࣞ' ��� ] Syntheticvariables densties generatedwith different values of epsilon agains real data densities

When we consider the privacy budget of a model, we can observe that greater values of  imply
fewer privacy constraints being imposed. This, in turn, suggests a more transparent generation of
data. Consequently, if we increase the privacy budget parameter, we can expect an improvement
in the model’s performance on utility metrics.

This can be clearly seen at Figure 4.2, where the accuracy, F1 and recall of the DP-CTGAN model
are shown for the different models fitted, varying the  parameter and using different validation
techniques.

The overall score aligns with the theoretical ex-
pectations, regardless of the validation technique
implemented.

Another piece of evidence that further supports this
idea can be found in the PATE-CTGAN approach.
Similar to the PATEGAN method, the PATE-CTGAN
technique incorporates the concept of private
aggregation of teacher ensembles over a conditional
tabular GAN.

Due to its complexity, this model was poorly trained
over few teachers discriminators but still the results

࣏ࣕ࣌࣋5 ��� ] ε-tuning synthetic datasets
from PATE-CTGAN
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are in line with previous findings. These can be seen in Figure 4.3, which shows TSTS accuracy
and value of the area under the ROC curve over different values of .

࣏࣑࣓ࣛࣞ' ��� ] Accuracy, F1 and recall of tuning  over different DP-CTGAN synthetizers
To investigate this relationship further, a comprehensive measure of association between cat-
egorical variables was computed for both the original dataset and the different -DP synthetic
datasets.

࣏࣑࣓ࣛࣞ' ��� ] Tuning results for  in PATE-CTGAN

The measure employed for this analysis was the Cramer’s V statistic, which serves as an indicator
of the strength of correlation and ranges between 0 (indicating no association) and 1 (indicating
perfect association). The results of this analysis are presented in Figure 4.4, which displays the
four pairwise correlation matrices for Cramer’s V. Specifically, Figure 4.4a illustrates the dataset
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generated with the highest privacy budget, while Figure 4.4d depicts the original dataset without
any privacy constraints.

Upon examining the heatmaps of these correlation matrices, we can observe an interesting trend.
As we transition from Figure 4.4a to Figure 4.4d, the pairwise Cramer’s V statistics become
progressively more similar to the results obtained from the original dataset. Additionally, it is
worth noting that the least differentially private dataset, displayed in Figure 4.4c, exhibits a
correlation heatmap that accurately reflects the original pattern in Figure 4.4d.

	B
 Synthetic data with  � ��� 	C
 Synthetic data with  � ��

	D
 Synthetic data with  � ��� 	E
 Original data without privacy constraints

࣏࣑࣓ࣛࣞ' ��� ] Heatmaps of Cramer’s V pairwise correlations matrices
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Unfortunately, the results shown could be assesed only
on census dataset. As for the other dataset, the required
computational resources exceeded our limited power. Only a
DP-CTGAN, trained with smaller number of epoch, successfully
converged. The results are shown on the side figure, where
we see accuracy and AUC scores (TSTS), which still confirmed
the linear pattern between greater privacy budget and model
accuracies.

However, the use of differential privacy comes at a cost, pri-
marily in terms of reduced output accuracy. This cost depends
on factors such as the desired level of privacy, the size of the
dataset, and the range of possible values for each individual. It
is also influenced by the amount of information being released,
so it is important to previously define the variable types or their
bounds and preprocess the data previously, instead of adapting
a solution which infer this information or automatically prepro-
cess the data.

For this reason, also other metrics to asses the utility of this data have been considered. Among
these, the pMSE ratio scores, which can be seen as the ratio between observed utility and
expected utility, are displayed below. Here, PATE-synthesizers reported the highest scores; the
best results were achieved with larger privacy budgets, aligning with increased utilities.

࣏࣑࣓ࣛࣞ' ��� ] Evaluation of pMSE across different models generated data

Another metric useful for data comparison is the syn-
thethic ranking agreement, which on figure on the
side is displayed for the recall. This metric serves as in
indicator of consistency in the rankings of predictive
models when transitioning from real data to synthetic
data. The results are in line with previous findings;
the PATEGAN was found as the most consistent syn-
thesizer.
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Although tighter cumulative privacy loss bounds, which are offered by different forms of dif-
ferential privacy, greatly improve the model’s usefulness within a specific privacy budget, it is
important to understand that the decrease in noise also increases the vulnerability to privacy
attacks. These attacks take advantage of the reduced amount of noise to gain unauthorized
access to sensitive information, putting the overall privacy at risk.

Figure 4.6 show the results of each membership inference attack performed against the original
dataset and the different datasets generated with different privacy budgets, namely  � 0.1, 10,
100. More precisely, it displays the percentage share of records which were found closer to the
training than the holdout dataset. In other words, this is the proportion of observations which
were likely being part of the real data.

࣏࣑࣓ࣛࣞ' ��� ]Membership inference attack over synthetic datasets generated with different values of ε

The darkest red column corresponds to the NP dataset, whereas the lightest one shows the most
privatized synthetic dataset. There is a significant jump (from 67% to 78% percentage decrease)
in the shares of records reveled by this attack, which is remarkably evidenced in all the three
generative models. However, this reduction is particularly high when setting low values of , but
still reflects the efficiency of applying DP.
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Membership inference attack calculates probabilities
of member and non-member samples to be generated
by the synthetic data generator.

The assumption is that since the generative model is
trained to approximate the training data distribution
then the probability of a sample to be a member of
the training data should be proportional to the proba-
bility that the query sample can be generated by the
generative model.

࣏ࣕ࣌࣋5 ��� ]Membership inference attacks
results

So, if the probability that the query sample is generated by the generative model is large, it is
more likely that the query sample was used to train the generative model. This probability is
approximated by the Parzen window density estimation, computed from the NN distances from
the query samples to the synthetic data samples.

The area under the receiver operating characteristic curve (AUC ROC), displayed in Figure 4.7,
gives another privacy risk measure. In the figure, the AUCs of membership inference attacks
over not private data (yellow) and 0.1 DP data (blue) provide further evidences on the efficacy
of applying DP to protect against privacy attacks. For the former the attack obtained a success
score of 70%, compared to the latter which was significantly lower, precisely it obtained an AUC
score of 48%.

࣏࣑࣓ࣛࣞ' ��� ] ROC curves of MIA attacks over NP data (yellow) and 0.1 DP data (blue)
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Differential privacy, among its several applications, can also be applied within common machine
learning algorithms. This section demonstrate how DP can be achieved also within supervised
learning on a tabular dataset. This ensures that the contribution of the individuals’ data to the
resulting machine learning model is masked out. Consequently it is not possible that information
of individuals may be leaked from the trained machine learning model.

࣏ࣕ࣌࣋5 ��� ] Classification accuracies metrics of differentially private ML models

In table 4.6, the results of the analysis are shown. The models considered are the logistic
regression and the gaussian naive bayes, both computed with a privacy budget of 1 and without
privacy constraints. We can see that the overall performance of differentially private models was
found to be good. As expected, the DP scores were found slightly lower but still very competitive
with the NP counterparts as their averages ranged between 60%-70%. Particularly, the score of
DP logistic regression decreased in accuracy and AUC of just 6 and 4 basis points respectively.

Furthermore, another point of interest was to assess the impact of the dataset size and its com-
plexity on resulting privacy levels and accuracy of the machine learning model. The performance
of machine learning models can generally be improved by providing more training data. The
following part assesses to which extend the accuracy impact, due to the noise ingestion, can be
compensated by increasing the size of the training set. It is important to recall that lower ε values
are related with higher statistical privacy guarantees.

The results, displayed in Figure 4.8, provide AUC scores for different levels of privacy on the
x-axis, controlled by the parameter epsilon , and decreasing training set sizes on the y-axis.
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	B
 DP Naive Bayes 	C
 DP Logistic Regression

࣏࣑࣓ࣛࣞ' ��� ] AUC scores of DP-ML models by  and training set size
The different scores follow a clear pattern, reducing the privacy constraints on the model and
increasing the number of observations result in higher accuracy scores. Another interesting
finding is that for very small values of  the score was found to be always the same, despite the
set size. Similarly, increasing the privacy budget without feeding the model with large amount of
data will result in low scores. This result provides a valuable evidence to consider when tuning
hyperparameters among with privacy constraints in a machine learning model.

All in all, results show that performing machine learning based on a differentially private algorithm
can lead to comparable performance like when using a normal classifier. However, research
shows that this is not always the case depending on the dataset’s size and characteristics, and
other factors.

The synthesizer approach’s main advantage is that the resulting dataset can be shared and used
for analytical purposes any number of times without increasing the risks associated with privacy
loss. Another advantage is that the synthesizer allows producing any arbitrary amount of data
derived from the original dataset’s distribution. This could be a promising approach for data
augmentation to improve the resulting machine learning model’s quality.
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This thesis, in addition to serving as a comprehensive guide on the latest state-of-the-art Privacy-
Enhancing Techniques to address the important issues related to privacy attacks, aimed at provid-
ing evidence in the field of differential privacy, by evaluating the latest techniques discovered in
most recent years. In particular, this work focused on assessing privacy and utility levels within
synthetic data created from differentially private generative adversarial networks, for different
values of privacy budgets and datasets and by executing concrete attacks against these models.

The applicability of DP in generative methods has been outlined and results show that for certain
generative models with DP, the performance was competitive and sometimes better than their
non-private counterparts while addressing a reasonably good privacy guarantee.

Furthermore, it was demonstrated that the performance of produced models strongly depends
on the chosen privacy budget, with low values reducing model utility. Nevertheless, the use of
higher privacy budgets allows training models that show only a moderately reduced performance
in comparison to the non-private baseline models.

This should motivate ML engineers to include DP in their systems, as the perfect trade-off
between privacy and utility could be met. Data custodians must be aware of the potential risks
and employ appropriate techniques to mitigate them while maintaining data usability. These
findings also provided evidence on reduced privacy-related risks when applying DP. Although
understanding and assessing deeper the residual privacy risks associated with different data
protection methods is essential to ensure that individuals’ privacy is adequately protected.

Finally, it was shown that performing machine learning based on a differentially private algorithm
can lead to comparable performance to a normal classifier. In this line, could be interesting
investigating in whether a DP-ML model is comparable to a ML model applied to a DP dataset.
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Training generative adversarial networks, specially when integrating the PATE framework, comes
with several challenges. First of all, this include the necessity of working with a very powerful
machine to meet the intense computational costs required to correctly train these networks. This
limitation affected the results as it was not possible to perform hyperparameters tuning within
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the models, more than the crucial ones for the scope of this work. Also, it was not possible to
evaluate these results on a more complex data set, to be able to generalize more these findings.

In addition, it is well documented in the literature that GANs are unstable during training. The
large bias produced by the critic in the gradient of the generator, when mixed with the imposed
gradient noise by the differential privacy, can increase training instabilities. These issues are
reported by the GANs-ML community, therefore next work should focus mostly in finding the
best practices to overcome these limitations.

GANs’ instability is present also when performing hyperparameters tuning, as these tend to
be highly sensitive to slight changes in parameters, affecting the quality of synthetic datasets
[Frigerio et al., 2019]. Future work could focus on implementing DP within other generative
models and compare the results, by trying over different datasets used in the industry with higher
complexity and number of classes.

Moreover, the variety of privacy attacks used to evaluate the synthetically generated datasets was
limited due to the constrained scope of this work, so this study could be expanded by including
more attack types in the future. Although, it is worth mentioning that the resources available on
the web are still limited. For example, most of the libraries used for these analysis are still on the
making, with latest commits dated to some week before.
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